Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The...Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.展开更多
Three kinds of tetrapod-like ZnO nanostructures have been synthesized simultaneously via pure Zn chemical vapor deposition on silicon wafers with (111) orientation (Si (111)) at 920 ℃. X-ray diffraction indicat...Three kinds of tetrapod-like ZnO nanostructures have been synthesized simultaneously via pure Zn chemical vapor deposition on silicon wafers with (111) orientation (Si (111)) at 920 ℃. X-ray diffraction indicates that the nanotetrapods are of wurtzite structure. The morphology and the microstructure of the nanotetrapods are investigated by the scanning electron microscopy. Selected area electron diffraction shows the growth direction, and energy dispersive X-ray spectroscopy reveals the atomic composition ratio of Zn/O. The growth process is briefly discussed. The optical property of the products was also recorded by means of photoluminescence spectroscopy.展开更多
Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,si...Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,simplicity,and easy implementation.Moreover,ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process,particularly at room temperature.In this work,ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures(including room temperature).The formation of Zn^(2+)complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO,which resulted in various structures,such as nanoparticles,nanosheets,microflowers,and single crystals.Finally,the obtained ZnO was used in the optoelectronic application of ultraviolet detectors.展开更多
The zinc oxide whiskers were synthesized by the equilibrium gas expanding method at the temperature of 700 C with metallic zinc as the main raw material without any catalysts. The effects of the growth time on microst...The zinc oxide whiskers were synthesized by the equilibrium gas expanding method at the temperature of 700 C with metallic zinc as the main raw material without any catalysts. The effects of the growth time on microstructure and photoluminescence properties were investigated. The results show that the as-grown samples are composed of uniform tetrapod-like ZnO whiskers. The length and diameter of the arms of the tetrapod-like ZnO whiskers increase obviously with the increase of the growth time. The strong single ultraviolet (UV) emission centering 385-391 nm without any accompanying deep-level emission is observed in the room temperature photoluminescence (PL) spectra of the whiskers. The intensity of UV emission increases markedly with the increase of growth time.展开更多
文摘Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.
文摘Three kinds of tetrapod-like ZnO nanostructures have been synthesized simultaneously via pure Zn chemical vapor deposition on silicon wafers with (111) orientation (Si (111)) at 920 ℃. X-ray diffraction indicates that the nanotetrapods are of wurtzite structure. The morphology and the microstructure of the nanotetrapods are investigated by the scanning electron microscopy. Selected area electron diffraction shows the growth direction, and energy dispersive X-ray spectroscopy reveals the atomic composition ratio of Zn/O. The growth process is briefly discussed. The optical property of the products was also recorded by means of photoluminescence spectroscopy.
基金funded by the National Natural Science F oundation of China(No.52172205)。
文摘Zinc oxide(ZnO)serves as a crucial functional semiconductor with a wide direct bandgap of approximately 3.37 eV.Solvothermal reaction is commonly used in the synthesis of ZnO micro/nanostructures,given its low cost,simplicity,and easy implementation.Moreover,ZnO morphology engineering has become desirable through the alteration of minor conditions in the reaction process,particularly at room temperature.In this work,ZnO micro/nanostructures were synthesized in a solution by varying the amounts of the ammonia added at low temperatures(including room temperature).The formation of Zn^(2+)complexes by ammonia in the precursor regulated the reaction rate of the morphology engineering of ZnO,which resulted in various structures,such as nanoparticles,nanosheets,microflowers,and single crystals.Finally,the obtained ZnO was used in the optoelectronic application of ultraviolet detectors.
基金Project(2009AA03Z427)supported by the National High-tech Research and Development Program of ChinaProject(2006z02-006-3)supported by the Science Foundation of Sichuan Province,China
文摘The zinc oxide whiskers were synthesized by the equilibrium gas expanding method at the temperature of 700 C with metallic zinc as the main raw material without any catalysts. The effects of the growth time on microstructure and photoluminescence properties were investigated. The results show that the as-grown samples are composed of uniform tetrapod-like ZnO whiskers. The length and diameter of the arms of the tetrapod-like ZnO whiskers increase obviously with the increase of the growth time. The strong single ultraviolet (UV) emission centering 385-391 nm without any accompanying deep-level emission is observed in the room temperature photoluminescence (PL) spectra of the whiskers. The intensity of UV emission increases markedly with the increase of growth time.