The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 4...The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 40 L sequencing batch reactor (SBR) and domestie sewage as the organic substrate. The activity of INT-ETS during one SBR cycle, and the effeet of the ammonia concentration and the concentration of organic matter influent on the INT-ETS activity were investigated. The results show that: the use of INT is reliable in estimating of biological activity of activated sludge of SBR system; Biological activity of organic matter biodegradation, nitrification and denitrification process in SBR system reduce orderly. Obviously, INT-ETS activity reduces from 232.59 rny/(g · h) to 190. 65 rag/( g ·h) at first and then decreases to 113.88 my/( g · h) when influent concentration of COD and NH4+-N is 300 my/L and 40 mg/L respectively. In addition, various influent Nitrogen (NH4+-N are 14.5 mg/L and 42.0 my/L) and organic shock loading (COD are 293 mg/L and 685 my/L) experimenntions cure prove that operational conditions have no obvious effect on INT-ETS variation rule. However, the time of the appearance of feature points marking different reaction phase is influenced.展开更多
基金Sponsored by the National Water Pollution Control and Management Technology Major Projects(Grant No.2012ZX07408001-07,2012ZX07201001-01)
文摘The tetrazolium salt 2-(4-Iodophenyl) -3-( 4-nitrophenyl ) -5-phenyltetrazolium chloride (INT) was used as a tool fi)r estimating the activity of the electron transport system (ETS) in activated sludge in a 40 L sequencing batch reactor (SBR) and domestie sewage as the organic substrate. The activity of INT-ETS during one SBR cycle, and the effeet of the ammonia concentration and the concentration of organic matter influent on the INT-ETS activity were investigated. The results show that: the use of INT is reliable in estimating of biological activity of activated sludge of SBR system; Biological activity of organic matter biodegradation, nitrification and denitrification process in SBR system reduce orderly. Obviously, INT-ETS activity reduces from 232.59 rny/(g · h) to 190. 65 rag/( g ·h) at first and then decreases to 113.88 my/( g · h) when influent concentration of COD and NH4+-N is 300 my/L and 40 mg/L respectively. In addition, various influent Nitrogen (NH4+-N are 14.5 mg/L and 42.0 my/L) and organic shock loading (COD are 293 mg/L and 685 my/L) experimenntions cure prove that operational conditions have no obvious effect on INT-ETS variation rule. However, the time of the appearance of feature points marking different reaction phase is influenced.