行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD-S)的信号处理方法,且转化为时频分布图...行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD-S)的信号处理方法,且转化为时频分布图像,应用时频图像纹理特征进行行星齿轮故障诊断。首先,把振动信号经由LMD-S变换处理后利用相关分析方法滤除干扰且转化为时频分布图像;其次,利用非均匀局部二值模式(local binary patterns,简称LBP)提取不同工况下采集数据的图像纹理特征;最后,采用极限学习机识别出3种故障类型,故障识别准确率达到90%,证明了此方法的有效性。展开更多
文摘行星齿轮箱结构复杂,当发生故障时其振动信号呈非线性非平稳特点且故障信号微弱,为了能够准确提取行星齿轮磨损故障信息的特征,提出局部均值分解(local mean decomposition,简称LMD)结合S变换(LMD-S)的信号处理方法,且转化为时频分布图像,应用时频图像纹理特征进行行星齿轮故障诊断。首先,把振动信号经由LMD-S变换处理后利用相关分析方法滤除干扰且转化为时频分布图像;其次,利用非均匀局部二值模式(local binary patterns,简称LBP)提取不同工况下采集数据的图像纹理特征;最后,采用极限学习机识别出3种故障类型,故障识别准确率达到90%,证明了此方法的有效性。