Background:With the rapid development of the world’s technology,the connection and integration between traditional medicine and modern machine learning technology are increasingly close.In this study,we aimed to anal...Background:With the rapid development of the world’s technology,the connection and integration between traditional medicine and modern machine learning technology are increasingly close.In this study,we aimed to analyze publications on machine learning in traditional medicine by using bibliometric methods and explore global trends in the field.Methods:Relevant research on machine learning in traditional medicine extracted from the Web of Science Core Collection database.Bibliometric analysis and visualization were performed using the Bibliometrix package in R software.Global trends,source journals,authorship,and thematic keywords analysis were performed in this study.Results:From 2012 to 2022,a total of 282 publications on machine learning in traditional medicine were identified and analyzed.The average annual growth rate of the publications was 13.35%.China had the largest contribution in this field(53.9%),followed by the United States(32.6%).IEEE Access had the largest number of published articles,with a total of 15 articles.Calvin Yu-Chian Chen,Xiao-juan Hu and Jue Wang were the main researchers in this field.Shanghai University of Traditional Chinese Medicine and University of California,San Francisco were the main research institutions.Conclusion:This study provides information on research trends in machine learning in traditional medicine to better understand research hotspots and future developments in this field.According to current global trends,the number of publications in this field will gradually increase.China currently dominated the field.Applied research of machine learning techniques may be the next hot topic in this field and deserves further attention.展开更多
Objectives: The study examined nursing students’ acquisition of good communication skills via text analysis of learning outcomes using cooperative learning. Methods: The study involved 90 first-year students enrolled...Objectives: The study examined nursing students’ acquisition of good communication skills via text analysis of learning outcomes using cooperative learning. Methods: The study involved 90 first-year students enrolled in the nursing department of a Japanese university. Participants were asked to learn three learning tasks considered to heighten communicative ability through firsthand experience using the discussion-based technique of cooperative learning: 1) to engage in self-reflection, 2) to imagine something beyond your own experience, and 3) to accept something that does not fit within the scope of your own experience or thought. A questionnaire survey consisted of five items, including learning challenges 1) to 3) as well as 4) “Satisfaction with the exercises” and 5) “Students’ hopes.” These items were evaluated using text analysis. Results: A total of 79 survey questionnaires were collected (87.8% recovery rate) for analysis. “Self-reflection and self-realizations prompted by the communication exercise” was observed as a characteristic of Task 1, “becoming aware of ideas and opinions different than one’s own by listening to the opinions of others” as a characteristic of Task 2, “deepening relationships by learning about diverse ideas and values through interactions with others” as a characteristic of Task 3, and “the effects of communicating with student subjects” as a characteristic of Task 4. The responses to Task 5 were diverse;no common characteristics were found. The intervention was found to be useful for student engagement and the communication required of nurses. Conclusions: Using cooperative learning discussion in communication class was found to be effective. As nursing is an inherently interpersonal occupation, such effects include important elements.展开更多
The Analects, Mengzi and Xunzi are the top-three classical works of pre-Qin Confucianism, which epitomized thoughts and ideas of Confucius, Mencius and XunKuang1. There have been lots of spirited and in-depth discussi...The Analects, Mengzi and Xunzi are the top-three classical works of pre-Qin Confucianism, which epitomized thoughts and ideas of Confucius, Mencius and XunKuang1. There have been lots of spirited and in-depth discussions on their ideological inheritance and development from all kinds of academics. This paper tries to cast a new light on these discussions through “machine reading2”.展开更多
Textual Emotion Analysis(TEA)aims to extract and analyze user emotional states in texts.Various Deep Learning(DL)methods have developed rapidly,and they have proven to be successful in many fields such as audio,image,...Textual Emotion Analysis(TEA)aims to extract and analyze user emotional states in texts.Various Deep Learning(DL)methods have developed rapidly,and they have proven to be successful in many fields such as audio,image,and natural language processing.This trend has drawn increasing researchers away from traditional machine learning to DL for their scientific research.In this paper,we provide an overview of TEA based on DL methods.After introducing a background for emotion analysis that includes defining emotion,emotion classification methods,and application domains of emotion analysis,we summarize DL technology,and the word/sentence representation learning method.We then categorize existing TEA methods based on text structures and linguistic types:text-oriented monolingual methods,text conversations-oriented monolingual methods,text-oriented cross-linguistic methods,and emoji-oriented cross-linguistic methods.We close by discussing emotion analysis challenges and future research trends.We hope that our survey will assist readers in understanding the relationship between TEA and DL methods while also improving TEA development.展开更多
The Conference of the Parties(COP26 and 27)placed significant emphasis on climate financing policies with the objective of achieving net zero emissions and carbon neutrality.However,studies on the implementation of th...The Conference of the Parties(COP26 and 27)placed significant emphasis on climate financing policies with the objective of achieving net zero emissions and carbon neutrality.However,studies on the implementation of this policy proposition are limited.To address this gap in the literature,this study employs machine learning techniques,specifically natural language processing(NLP),to examine 77 climate bond(CB)policies from 32 countries within the context of climate financing.The findings indicate that“sustainability”and“carbon emissions control”are the most outlined policy objectives in these CB policies.Additionally,the study highlights that most CB funds are invested toward energy projects(i.e.,renewable,clean,and efficient initiatives).However,there has been a notable shift in the allocation of CB funds from climate-friendly energy projects to the construction sector between 2015 and 2019.This shift raises concerns about the potential redirection of funds from climate-focused investments to the real estate industry,potentially leading to the greenwashing of climate funds.Furthermore,policy sentiment analysis revealed that a minority of policies hold skeptical views on climate change,which may negatively influence climate actions.Thus,the findings highlight that the effective implementation of CB policies depends on policy goals,objectives,and sentiments.Finally,this study contributes to the literature by employing NLP techniques to understand policy sentiments in climate financing.展开更多
Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In t...Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.展开更多
Recent text generation methods frequently learn node representations from graph‐based data via global or local aggregation,such as knowledge graphs.Since all nodes are connected directly,node global representation en...Recent text generation methods frequently learn node representations from graph‐based data via global or local aggregation,such as knowledge graphs.Since all nodes are connected directly,node global representation encoding enables direct communication between two distant nodes while disregarding graph topology.Node local representation encoding,which captures the graph structure,considers the connections between nearby nodes but misses out onlong‐range relations.A quantum‐like approach to learning bettercontextualised node embeddings is proposed using a fusion model that combines both encoding strategies.Our methods significantly improve on two graph‐to‐text datasets compared to state‐of‐the‐art models in various experiments.展开更多
If progress is to be made toward improving geohazard management and emergency decision-making,then lessons need to be learned from past geohazard information.A geologic hazard report provides a useful and reliable sou...If progress is to be made toward improving geohazard management and emergency decision-making,then lessons need to be learned from past geohazard information.A geologic hazard report provides a useful and reliable source of information about the occurrence of an event,along with detailed information about the condition or factors of the geohazard.Analyzing such reports,however,can be a challenging process because these texts are often presented in unstructured long text formats,and contain rich specialized and detailed information.Automatically text classification is commonly used to mine disaster text data in open domains(e.g.,news and microblogs).But it has limitations to performing contextual long-distance dependencies and is insensitive to discourse order.These deficiencies are most obviously exposed in long text fields.Therefore,this paper uses the bidirectional encoder representations from Transformers(BERT),to model long text.Then,utilizing a softmax layer to automatically extract text features and classify geohazards without manual features.The latent Dirichlet allocation(LDA)model is used to examine the interdependencies that exist between causal variables to visualize geohazards.The proposed method is useful in enabling the machine-assisted interpretation of text-based geohazards.Moreover,it can help users visualize causes,processes,and other geohazards and assist decision-makers in emergency responses.展开更多
Text-mining technologies have substantially affected financial industries.As the data in every sector of finance have grown immensely,text mining has emerged as an important field of research in the domain of finance....Text-mining technologies have substantially affected financial industries.As the data in every sector of finance have grown immensely,text mining has emerged as an important field of research in the domain of finance.Therefore,reviewing the recent literature on text-mining applications in finance can be useful for identifying areas for further research.This paper focuses on the text-mining literature related to financial forecasting,banking,and corporate finance.It also analyses the existing literature on text mining in financial applications and provides a summary of some recent studies.Finally,the paper briefly discusses various text-mining methods being applied in the financial domain,the challenges faced in these applications,and the future scope of text mining in finance.展开更多
The emergence of big data leads to an increasing demand for data processing methods.As the most influential media for Chinese domestic movie ratings,Douban contains a huge amount of data and one can understand users...The emergence of big data leads to an increasing demand for data processing methods.As the most influential media for Chinese domestic movie ratings,Douban contains a huge amount of data and one can understand users'perspectives towards these movies by analyzing these data.In this article,we study movie's critics from the Douban website,perform sentiment analysis on the data obtained by crawling,and visualize the results with a word cloud.We propose a lightweight sentiment analysis method which is free from heavy training and visualize the results in a more conceivable way.展开更多
文摘Background:With the rapid development of the world’s technology,the connection and integration between traditional medicine and modern machine learning technology are increasingly close.In this study,we aimed to analyze publications on machine learning in traditional medicine by using bibliometric methods and explore global trends in the field.Methods:Relevant research on machine learning in traditional medicine extracted from the Web of Science Core Collection database.Bibliometric analysis and visualization were performed using the Bibliometrix package in R software.Global trends,source journals,authorship,and thematic keywords analysis were performed in this study.Results:From 2012 to 2022,a total of 282 publications on machine learning in traditional medicine were identified and analyzed.The average annual growth rate of the publications was 13.35%.China had the largest contribution in this field(53.9%),followed by the United States(32.6%).IEEE Access had the largest number of published articles,with a total of 15 articles.Calvin Yu-Chian Chen,Xiao-juan Hu and Jue Wang were the main researchers in this field.Shanghai University of Traditional Chinese Medicine and University of California,San Francisco were the main research institutions.Conclusion:This study provides information on research trends in machine learning in traditional medicine to better understand research hotspots and future developments in this field.According to current global trends,the number of publications in this field will gradually increase.China currently dominated the field.Applied research of machine learning techniques may be the next hot topic in this field and deserves further attention.
文摘Objectives: The study examined nursing students’ acquisition of good communication skills via text analysis of learning outcomes using cooperative learning. Methods: The study involved 90 first-year students enrolled in the nursing department of a Japanese university. Participants were asked to learn three learning tasks considered to heighten communicative ability through firsthand experience using the discussion-based technique of cooperative learning: 1) to engage in self-reflection, 2) to imagine something beyond your own experience, and 3) to accept something that does not fit within the scope of your own experience or thought. A questionnaire survey consisted of five items, including learning challenges 1) to 3) as well as 4) “Satisfaction with the exercises” and 5) “Students’ hopes.” These items were evaluated using text analysis. Results: A total of 79 survey questionnaires were collected (87.8% recovery rate) for analysis. “Self-reflection and self-realizations prompted by the communication exercise” was observed as a characteristic of Task 1, “becoming aware of ideas and opinions different than one’s own by listening to the opinions of others” as a characteristic of Task 2, “deepening relationships by learning about diverse ideas and values through interactions with others” as a characteristic of Task 3, and “the effects of communicating with student subjects” as a characteristic of Task 4. The responses to Task 5 were diverse;no common characteristics were found. The intervention was found to be useful for student engagement and the communication required of nurses. Conclusions: Using cooperative learning discussion in communication class was found to be effective. As nursing is an inherently interpersonal occupation, such effects include important elements.
文摘The Analects, Mengzi and Xunzi are the top-three classical works of pre-Qin Confucianism, which epitomized thoughts and ideas of Confucius, Mencius and XunKuang1. There have been lots of spirited and in-depth discussions on their ideological inheritance and development from all kinds of academics. This paper tries to cast a new light on these discussions through “machine reading2”.
基金This work is partially supported by the National Natural Science Foundation of China under Grant Nos.61876205 and 61877013the Ministry of Education of Humanities and Social Science project under Grant Nos.19YJAZH128 and 20YJAZH118+1 种基金the Science and Technology Plan Project of Guangzhou under Grant No.201804010433the Bidding Project of Laboratory of Language Engineering and Computing under Grant No.LEC2017ZBKT001.
文摘Textual Emotion Analysis(TEA)aims to extract and analyze user emotional states in texts.Various Deep Learning(DL)methods have developed rapidly,and they have proven to be successful in many fields such as audio,image,and natural language processing.This trend has drawn increasing researchers away from traditional machine learning to DL for their scientific research.In this paper,we provide an overview of TEA based on DL methods.After introducing a background for emotion analysis that includes defining emotion,emotion classification methods,and application domains of emotion analysis,we summarize DL technology,and the word/sentence representation learning method.We then categorize existing TEA methods based on text structures and linguistic types:text-oriented monolingual methods,text conversations-oriented monolingual methods,text-oriented cross-linguistic methods,and emoji-oriented cross-linguistic methods.We close by discussing emotion analysis challenges and future research trends.We hope that our survey will assist readers in understanding the relationship between TEA and DL methods while also improving TEA development.
基金supported by the funding of Belt and Road Research Institute,Xiamen University(No:1500-X2101200)National Natural Science Foundation of China(Key Program,No:72133003).
文摘The Conference of the Parties(COP26 and 27)placed significant emphasis on climate financing policies with the objective of achieving net zero emissions and carbon neutrality.However,studies on the implementation of this policy proposition are limited.To address this gap in the literature,this study employs machine learning techniques,specifically natural language processing(NLP),to examine 77 climate bond(CB)policies from 32 countries within the context of climate financing.The findings indicate that“sustainability”and“carbon emissions control”are the most outlined policy objectives in these CB policies.Additionally,the study highlights that most CB funds are invested toward energy projects(i.e.,renewable,clean,and efficient initiatives).However,there has been a notable shift in the allocation of CB funds from climate-friendly energy projects to the construction sector between 2015 and 2019.This shift raises concerns about the potential redirection of funds from climate-focused investments to the real estate industry,potentially leading to the greenwashing of climate funds.Furthermore,policy sentiment analysis revealed that a minority of policies hold skeptical views on climate change,which may negatively influence climate actions.Thus,the findings highlight that the effective implementation of CB policies depends on policy goals,objectives,and sentiments.Finally,this study contributes to the literature by employing NLP techniques to understand policy sentiments in climate financing.
基金supported in part by the National Natural Science Foundation of China(61302041,61363044,61562053,61540042)the Applied Basic Research Foundation of Yunnan Provincial Science and Technology Department(2013FD011,2016FD039)
文摘Text in natural scene images usually carries abundant semantic information. However, due to variations of text and complexity of background, detecting text in scene images becomes a critical and challenging task. In this paper, we present a novel method to detect text from scene images. Firstly, we decompose scene images into background and text components using morphological component analysis(MCA), which will reduce the adverse effects of complex backgrounds on the detection results.In order to improve the performance of image decomposition,two discriminative dictionaries of background and text are learned from the training samples. Moreover, Laplacian sparse regularization is introduced into our proposed dictionary learning method which improves discrimination of dictionary. Based on the text dictionary and the sparse-representation coefficients of text, we can construct the text component. After that, the text in the query image can be detected by applying certain heuristic rules. The results of experiments show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant(62077015)the Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province,Zhejiang Normal University,Zhejiang,China,the Key Research and Development Program of Zhejiang Province(No.2021C03141)the National Key R&D Program of China under Grant(2022YFC3303600).
文摘Recent text generation methods frequently learn node representations from graph‐based data via global or local aggregation,such as knowledge graphs.Since all nodes are connected directly,node global representation encoding enables direct communication between two distant nodes while disregarding graph topology.Node local representation encoding,which captures the graph structure,considers the connections between nearby nodes but misses out onlong‐range relations.A quantum‐like approach to learning bettercontextualised node embeddings is proposed using a fusion model that combines both encoding strategies.Our methods significantly improve on two graph‐to‐text datasets compared to state‐of‐the‐art models in various experiments.
基金supported by the Natural Science Foundation of China(No.42301492)the National Key Research and Development Program(No.2022YFB3904200)+4 种基金the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources(No.KF-2022-07-014)the Natural Science Foundation of Hubei Province of China(No.2022CFB640)the Open Fund of Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering(No.2022SDSJ04)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities.
文摘If progress is to be made toward improving geohazard management and emergency decision-making,then lessons need to be learned from past geohazard information.A geologic hazard report provides a useful and reliable source of information about the occurrence of an event,along with detailed information about the condition or factors of the geohazard.Analyzing such reports,however,can be a challenging process because these texts are often presented in unstructured long text formats,and contain rich specialized and detailed information.Automatically text classification is commonly used to mine disaster text data in open domains(e.g.,news and microblogs).But it has limitations to performing contextual long-distance dependencies and is insensitive to discourse order.These deficiencies are most obviously exposed in long text fields.Therefore,this paper uses the bidirectional encoder representations from Transformers(BERT),to model long text.Then,utilizing a softmax layer to automatically extract text features and classify geohazards without manual features.The latent Dirichlet allocation(LDA)model is used to examine the interdependencies that exist between causal variables to visualize geohazards.The proposed method is useful in enabling the machine-assisted interpretation of text-based geohazards.Moreover,it can help users visualize causes,processes,and other geohazards and assist decision-makers in emergency responses.
文摘Text-mining technologies have substantially affected financial industries.As the data in every sector of finance have grown immensely,text mining has emerged as an important field of research in the domain of finance.Therefore,reviewing the recent literature on text-mining applications in finance can be useful for identifying areas for further research.This paper focuses on the text-mining literature related to financial forecasting,banking,and corporate finance.It also analyses the existing literature on text mining in financial applications and provides a summary of some recent studies.Finally,the paper briefly discusses various text-mining methods being applied in the financial domain,the challenges faced in these applications,and the future scope of text mining in finance.
文摘The emergence of big data leads to an increasing demand for data processing methods.As the most influential media for Chinese domestic movie ratings,Douban contains a huge amount of data and one can understand users'perspectives towards these movies by analyzing these data.In this article,we study movie's critics from the Douban website,perform sentiment analysis on the data obtained by crawling,and visualize the results with a word cloud.We propose a lightweight sentiment analysis method which is free from heavy training and visualize the results in a more conceivable way.