To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con...To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.展开更多
A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywor...A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. The ontology is domain specific and includes a list of keywords organized by degree of importance to the categories of the ontology, and by means of semantic knowledge, the ontology can improve the effects of document similarity measure and feedback of information retrieval systems. Two approaches to evaluating the performance of this similarity measure and the comparison with standard cosine vector similarity measure are also described.展开更多
Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension...Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization.展开更多
Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method...Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.展开更多
This paper proposed an incremental textclustering algorithm based on semantic sequence. Using similarity relation of semantic sequences and calculating the cover of similarity semantic sequences set, the candidate clu...This paper proposed an incremental textclustering algorithm based on semantic sequence. Using similarity relation of semantic sequences and calculating the cover of similarity semantic sequences set, the candidate cluster with minimum entropy overlap value was selected as a result cluster every time in this algorithm. The comparison of experimental results shows that the precision of the algorithm is higher than other algorithms under same conditions and this is obvious especially on long documents set.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of ...To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of clustering algorithm has to be improved with the refinement algorithm application. The experiment result demonstrated that the multilevel graph text clustering algorithm is available. Key words text clustering - multilevel coarsen graph model - refinement algorithm - high-dimensional clustering CLC number TP301 Foundation item: Supported by the National Natural Science Foundation of China (60173051)Biography: CHEN Jian-bin(1970-), male, Associate professor, Ph. D., research direction: data mining.展开更多
Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the s...Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the sequence. In this paper, a novel method named Frequent Itemset-based Clustering with Window (FICW) was proposed, which makes use of the semantic information for text clustering with a window constraint. The experimental results obtained from tests on three (hypertext) text sets show that FICW outperforms the method compared in both clustering accuracy and efficiency.展开更多
Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervise...Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervised clustering analysis of BOA-Argo ocean text data.Unsupervised K-Means and Affinity Propagation(AP)are two classical clustering algorithms.The Election-AP algorithm is proposed to handle the final cluster number in AP clustering as it has proved to be difficult to control in a suitable range.Semi-supervised samples thermocline data in the BOA-Argo dataset according to the thermocline standard definition,and use this data for semi-supervised cluster analysis.Several semi-supervised clustering algorithms were chosen for comparison of learning performance:Constrained-K-Means,Seeded-K-Means,SAP(Semi-supervised Affinity Propagation),LSAP(Loose Seed AP)and CSAP(Compact Seed AP).In order to adapt the single label,this paper improves the above algorithms to SCKM(improved Constrained-K-Means),SSKM(improved Seeded-K-Means),and SSAP(improved Semi-supervised Affinity Propagationg)to perform semi-supervised clustering analysis on the data.A DSAP(Double Seed AP)semi-supervised clustering algorithm based on compact seeds is proposed as the experimental data shows that DSAP has a better clustering effect.The unsupervised and semi-supervised clustering results are used to analyze the potential patterns of marine data.展开更多
In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing ...In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing is proposed. First, every word vector by new entities is extended after the documents are represented by tf-idf. Then the feature extracting algorithm is applied for the documents. Finally, the algorithm of ontology aggregation clustering (OAC) is proposed to improve the result of document clustering. Experiments are based on the data set of Reuters 20 News Group, and experimental results are compared with the results obtained by mutual information(MI). The conclusion draws that the proposed algorithm of document clustering based on ontology is better than the other existed clustering algorithms such as MNB, CLUTO, co-clustering, etc.展开更多
Modeling topics in short texts presents significant challenges due to feature sparsity, particularly when analyzing content generated by large-scale online users. This sparsity can substantially impair semantic captur...Modeling topics in short texts presents significant challenges due to feature sparsity, particularly when analyzing content generated by large-scale online users. This sparsity can substantially impair semantic capture accuracy. We propose a novel approach that incorporates pre-clustered knowledge into the BERTopic model while reducing the l2 norm for low-frequency words. Our method effectively mitigates feature sparsity during cluster mapping. Empirical evaluation on the StackOverflow dataset demonstrates that our approach outperforms baseline models, achieving superior Macro-F1 scores. These results validate the effectiveness of our proposed feature sparsity reduction technique for short-text topic modeling.展开更多
Ant-based text clustering is a promising technique that has attracted great research attention. This paper attempts to improve the standard ant-based text-clustering algorithm in two dimensions. On one hand, the ontol...Ant-based text clustering is a promising technique that has attracted great research attention. This paper attempts to improve the standard ant-based text-clustering algorithm in two dimensions. On one hand, the ontology-based semantic similarity measure is used in conjunction with the traditional vector-space-model-based measure to provide more accurate assessment of the similarity between documents. On the other, the ant behavior model is modified to pursue better algorithmic performance. Especially, the ant movement rule is adjusted so as to direct a laden ant toward a dense area of the same type of items as the ant's carrying item, and to direct an unladen ant toward an area that contains an item dissimilar with the surrounding items within its Moore neighborhood. Using WordNet as the base ontology for assessing the semantic similarity between documents, the proposed algorithm is tested with a sample set of documents excerpted from the Reuters-21578 corpus and the experiment results partly indicate that the proposed algorithm perform better than the standard ant-based text-clustering algorithm and the k-means algorithm.展开更多
Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is pr...Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is proposed.The four parameters that influence the performance of the ant colony algorithm are encoded as chromosomes,thereby the fitness function,selection,crossover and mutation operator are designed to find the combination of optimal parameters through a number of iteration,and then it is applied to text clustering.The simulation results show that compared with the classical k-means clustering and the basic ant colony clustering algorithm,the proposed algorithm has better performance and the value of F-Measure is enhanced by 5.69%,48.60%and 69.60%,respectively,in 3 test datasets.Therefore,it is more suitable for processing a larger dataset.展开更多
A method of realization of automatic abstracting based on text clustering and natural language understanding is explored, aimed at overcoming shortages of some current methods. The method makes use of text clustering ...A method of realization of automatic abstracting based on text clustering and natural language understanding is explored, aimed at overcoming shortages of some current methods. The method makes use of text clustering and can realize automatic abstracting of multi-documents. The algo- rithm of twice word segmentation based on the title and first sentences in paragraphs is investigated. Its precision and recall is above 95 %. For a specific domain on plastics, an automatic abstracting system named TCAAS is implemented. The precision and recall of multi-document’s automatic ab- stracting is above 75 %. Also, the experiments prove that it is feasible to use the method to develop a domain automatic abstracting system, which is valuable for further in-depth study.展开更多
Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm...Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity.展开更多
In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from lar...In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from large collections of data,and particularly documents,has become more necessary and challenging.Text clustering is such a technique;it consists in dividing a set of text documents into clusters(groups),so that documents within the same cluster are closely related,whereas documents in different clusters are as different as possible.Clustering depends on measuring the content(i.e.,words)of a document in terms of relevance.Nevertheless,as documents usually contain a large number of words,some of them may be irrelevant to the topic under consideration or redundant.This can confuse and complicate the clustering process and make it less accurate.Accordingly,feature selection methods have been employed to reduce data dimensionality by selecting the most relevant features.In this study,we developed a text document clustering optimization model using a novel genetic frog-leaping algorithm that efficiently clusters text documents based on selected features.The proposed approach is based on two metaheuristic algorithms:a genetic algorithm(GA)and a shuffled frog-leaping algorithm(SFLA).The GA performs feature selection,and the SFLA performs clustering.To evaluate its effectiveness,the proposed approach was tested on a well-known text document dataset:the“20Newsgroup”dataset from the University of California Irvine Machine Learning Repository.Overall,after multiple experiments were compared and analyzed,it was demonstrated that using the proposed algorithm on the 20Newsgroup dataset greatly facilitated text document clustering,compared with classical K-means clustering.Nevertheless,this improvement requires longer computational time.展开更多
We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to r...We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among key-words in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality. Key words text classification - concept association - hierarchical clustering - hamming clustering CLC number TN 915. 08 Foundation item: Supporteded by the National 863 Project of China (2001AA142160, 2002AA145090)Biography: Su Gui-yang (1974-), male, Ph. D candidate, research direction: information filter and text classification.展开更多
In this paper, visualization of special features in “The Tale of Genji”, which is a typical Japanese classical literature, is studied by text mining the auxiliary verbs and examining the similarity in the sentence s...In this paper, visualization of special features in “The Tale of Genji”, which is a typical Japanese classical literature, is studied by text mining the auxiliary verbs and examining the similarity in the sentence style by the correspondence analysis with clustering. The result shows that the text mining error in the number of auxiliary verbs can be as small as 15%. The extracted feature in this study supports the multiple authors of “The Tale of Genji”, which agrees well with the result by Murakami and Imanishi [1]. It is also found that extracted features are robust to the text mining error, which suggests that the classification error is less affected by the text mining error and the possible use of this technique for further statistical study in classical literatures.展开更多
基金The National Natural Science Foundation of China(No60672056)Open Fund of MOE-MS Key Laboratory of Multime-dia Computing and Communication(No06120809)
文摘To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision.
基金The Young Teachers Scientific Research Foundation (YTSRF) of Nanjing University of Science and Technology in the Year of2005-2006.
文摘A method that combines category-based and keyword-based concepts for a better information retrieval system is introduced. To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. The ontology is domain specific and includes a list of keywords organized by degree of importance to the categories of the ontology, and by means of semantic knowledge, the ontology can improve the effects of document similarity measure and feedback of information retrieval systems. Two approaches to evaluating the performance of this similarity measure and the comparison with standard cosine vector similarity measure are also described.
基金supported by the National Natural Science Foundation of China (60774096)the National HighTech R&D Program of China (2008BAK49B05)
文摘Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization.
基金Supported by the National Natural Science Foundation of China (60503020, 60373066)the Outstanding Young Scientist’s Fund (60425206)+1 种基金the Natural Science Foundation of Jiangsu Province (BK2005060)the Opening Foundation of Jiangsu Key Laboratory of Computer Informa-tion Processing Technology in Soochow University
文摘Feature selection methods have been successfully applied to text categorization but seldom applied to text clustering due to the unavailability of class label information. In this paper, a new feature selection method for text clustering based on expectation maximization and cluster validity is proposed. It uses supervised feature selection method on the intermediate clustering result which is generated during iterative clustering to do feature selection for text clustering; meanwhile, the Davies-Bouldin's index is used to evaluate the intermediate feature subsets indirectly. Then feature subsets are selected according to the curve of the Davies-Bouldin's index. Experiment is carried out on several popular datasets and the results show the advantages of the proposed method.
基金Supported by the National Natural Science Funda-tion of China (60173058)
文摘This paper proposed an incremental textclustering algorithm based on semantic sequence. Using similarity relation of semantic sequences and calculating the cover of similarity semantic sequences set, the candidate cluster with minimum entropy overlap value was selected as a result cluster every time in this algorithm. The comparison of experimental results shows that the precision of the algorithm is higher than other algorithms under same conditions and this is obvious especially on long documents set.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘To construct a high efficient text clustering algorithm the multilevel graph model and the refinement algorithm used in the uncoarsening phase is discussed. The model is applied to text clustering. The performance of clustering algorithm has to be improved with the refinement algorithm application. The experiment result demonstrated that the multilevel graph text clustering algorithm is available. Key words text clustering - multilevel coarsen graph model - refinement algorithm - high-dimensional clustering CLC number TP301 Foundation item: Supported by the National Natural Science Foundation of China (60173051)Biography: CHEN Jian-bin(1970-), male, Associate professor, Ph. D., research direction: data mining.
基金Supported by the Natural Science Foundation ofHubei Province(ABA048)
文摘Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the sequence. In this paper, a novel method named Frequent Itemset-based Clustering with Window (FICW) was proposed, which makes use of the semantic information for text clustering with a window constraint. The experimental results obtained from tests on three (hypertext) text sets show that FICW outperforms the method compared in both clustering accuracy and efficiency.
基金This work was supported in part by the National Natural Science Foundation of China(51679105,61872160,51809112)“Thirteenth Five Plan”Science and Technology Project of Education Department,Jilin Province(JJKH20200990KJ).
文摘Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervised clustering analysis of BOA-Argo ocean text data.Unsupervised K-Means and Affinity Propagation(AP)are two classical clustering algorithms.The Election-AP algorithm is proposed to handle the final cluster number in AP clustering as it has proved to be difficult to control in a suitable range.Semi-supervised samples thermocline data in the BOA-Argo dataset according to the thermocline standard definition,and use this data for semi-supervised cluster analysis.Several semi-supervised clustering algorithms were chosen for comparison of learning performance:Constrained-K-Means,Seeded-K-Means,SAP(Semi-supervised Affinity Propagation),LSAP(Loose Seed AP)and CSAP(Compact Seed AP).In order to adapt the single label,this paper improves the above algorithms to SCKM(improved Constrained-K-Means),SSKM(improved Seeded-K-Means),and SSAP(improved Semi-supervised Affinity Propagationg)to perform semi-supervised clustering analysis on the data.A DSAP(Double Seed AP)semi-supervised clustering algorithm based on compact seeds is proposed as the experimental data shows that DSAP has a better clustering effect.The unsupervised and semi-supervised clustering results are used to analyze the potential patterns of marine data.
基金The National Natural Science Foundation of China(No.60373099),the Natural Science Foundation for Young Scholars of Northeast Normal University (No.20061005)
文摘In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing is proposed. First, every word vector by new entities is extended after the documents are represented by tf-idf. Then the feature extracting algorithm is applied for the documents. Finally, the algorithm of ontology aggregation clustering (OAC) is proposed to improve the result of document clustering. Experiments are based on the data set of Reuters 20 News Group, and experimental results are compared with the results obtained by mutual information(MI). The conclusion draws that the proposed algorithm of document clustering based on ontology is better than the other existed clustering algorithms such as MNB, CLUTO, co-clustering, etc.
文摘Modeling topics in short texts presents significant challenges due to feature sparsity, particularly when analyzing content generated by large-scale online users. This sparsity can substantially impair semantic capture accuracy. We propose a novel approach that incorporates pre-clustered knowledge into the BERTopic model while reducing the l2 norm for low-frequency words. Our method effectively mitigates feature sparsity during cluster mapping. Empirical evaluation on the StackOverflow dataset demonstrates that our approach outperforms baseline models, achieving superior Macro-F1 scores. These results validate the effectiveness of our proposed feature sparsity reduction technique for short-text topic modeling.
基金This work was supported in part by National Natural Science Foundation of China under Grants No.70301009 and No. 70431001, and by Ministry of Education, Culture, Sports, Science and Technology of Japan under the "Kanazawa Region, Ishikawa High-Tech Sensing Cluster of Knowledge-Based Cluster Creation Project"
文摘Ant-based text clustering is a promising technique that has attracted great research attention. This paper attempts to improve the standard ant-based text-clustering algorithm in two dimensions. On one hand, the ontology-based semantic similarity measure is used in conjunction with the traditional vector-space-model-based measure to provide more accurate assessment of the similarity between documents. On the other, the ant behavior model is modified to pursue better algorithmic performance. Especially, the ant movement rule is adjusted so as to direct a laden ant toward a dense area of the same type of items as the ant's carrying item, and to direct an unladen ant toward an area that contains an item dissimilar with the surrounding items within its Moore neighborhood. Using WordNet as the base ontology for assessing the semantic similarity between documents, the proposed algorithm is tested with a sample set of documents excerpted from the Reuters-21578 corpus and the experiment results partly indicate that the proposed algorithm perform better than the standard ant-based text-clustering algorithm and the k-means algorithm.
基金supported by the Hi-Tech Research and Development Program of China (No.2006AA01Z210).
文摘Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is proposed.The four parameters that influence the performance of the ant colony algorithm are encoded as chromosomes,thereby the fitness function,selection,crossover and mutation operator are designed to find the combination of optimal parameters through a number of iteration,and then it is applied to text clustering.The simulation results show that compared with the classical k-means clustering and the basic ant colony clustering algorithm,the proposed algorithm has better performance and the value of F-Measure is enhanced by 5.69%,48.60%and 69.60%,respectively,in 3 test datasets.Therefore,it is more suitable for processing a larger dataset.
基金supported by the National Natural Science Foundation of China(No.70572090,No.60305009)the Ph.D.Degree Teacher Foundation of North China Electric Power University.
文摘A method of realization of automatic abstracting based on text clustering and natural language understanding is explored, aimed at overcoming shortages of some current methods. The method makes use of text clustering and can realize automatic abstracting of multi-documents. The algo- rithm of twice word segmentation based on the title and first sentences in paragraphs is investigated. Its precision and recall is above 95 %. For a specific domain on plastics, an automatic abstracting system named TCAAS is implemented. The precision and recall of multi-document’s automatic ab- stracting is above 75 %. Also, the experiments prove that it is feasible to use the method to develop a domain automatic abstracting system, which is valuable for further in-depth study.
基金This work is supported by the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the National Natural Science Foundation of China(No.61772561)+2 种基金the Key Research&Development Plan of Hunan Province(Nos.2018NK2012,2019SK2022)the Degree&Postgraduate Education Reform Project of Hunan Province(No.209)the Postgraduate Education and Teaching Reform Project of Central South Forestry University(No.2019JG013).
文摘Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity.
基金This research was supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges Deanship of Scientific Research,King Saud University.
文摘In recent years,the volume of information in digital form has increased tremendously owing to the increased popularity of the World Wide Web.As a result,the use of techniques for extracting useful information from large collections of data,and particularly documents,has become more necessary and challenging.Text clustering is such a technique;it consists in dividing a set of text documents into clusters(groups),so that documents within the same cluster are closely related,whereas documents in different clusters are as different as possible.Clustering depends on measuring the content(i.e.,words)of a document in terms of relevance.Nevertheless,as documents usually contain a large number of words,some of them may be irrelevant to the topic under consideration or redundant.This can confuse and complicate the clustering process and make it less accurate.Accordingly,feature selection methods have been employed to reduce data dimensionality by selecting the most relevant features.In this study,we developed a text document clustering optimization model using a novel genetic frog-leaping algorithm that efficiently clusters text documents based on selected features.The proposed approach is based on two metaheuristic algorithms:a genetic algorithm(GA)and a shuffled frog-leaping algorithm(SFLA).The GA performs feature selection,and the SFLA performs clustering.To evaluate its effectiveness,the proposed approach was tested on a well-known text document dataset:the“20Newsgroup”dataset from the University of California Irvine Machine Learning Repository.Overall,after multiple experiments were compared and analyzed,it was demonstrated that using the proposed algorithm on the 20Newsgroup dataset greatly facilitated text document clustering,compared with classical K-means clustering.Nevertheless,this improvement requires longer computational time.
文摘We propose two models in this paper. The concept of association model is put forward to obtain the co-occurrence relationships among keywords in the documents and the hierarchical Hamming clustering model is used to reduce the dimensionality of the category feature vector space which can solve the problem of the extremely high dimensionality of the documents' feature space. The results of experiment indicate that it can obtain the co-occurrence relations among key-words in the documents which promote the recall of classification system effectively. The hierarchical Hamming clustering model can reduce the dimensionality of the category feature vector efficiently, the size of the vector space is only about 10% of the primary dimensionality. Key words text classification - concept association - hierarchical clustering - hamming clustering CLC number TN 915. 08 Foundation item: Supporteded by the National 863 Project of China (2001AA142160, 2002AA145090)Biography: Su Gui-yang (1974-), male, Ph. D candidate, research direction: information filter and text classification.
文摘In this paper, visualization of special features in “The Tale of Genji”, which is a typical Japanese classical literature, is studied by text mining the auxiliary verbs and examining the similarity in the sentence style by the correspondence analysis with clustering. The result shows that the text mining error in the number of auxiliary verbs can be as small as 15%. The extracted feature in this study supports the multiple authors of “The Tale of Genji”, which agrees well with the result by Murakami and Imanishi [1]. It is also found that extracted features are robust to the text mining error, which suggests that the classification error is less affected by the text mining error and the possible use of this technique for further statistical study in classical literatures.