期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于BERT字向量和TextCNN的农业问句分类模型分析 被引量:7
1
作者 鲍彤 罗瑞 +2 位作者 郭婷 贵淑婷 任妮 《南方农业学报》 CAS CSCD 北大核心 2022年第7期2068-2076,共9页
【目的】研究不同词向量和深度学习模型组合对农业问句分类结果的影响,为构建农业智能问答系统提供技术支撑。【方法】通过爬虫获取农业种植网等网站的问答数据,选择20000条问句进行人工标注,构建农业问句分类语料库。采用BERT对农业问... 【目的】研究不同词向量和深度学习模型组合对农业问句分类结果的影响,为构建农业智能问答系统提供技术支撑。【方法】通过爬虫获取农业种植网等网站的问答数据,选择20000条问句进行人工标注,构建农业问句分类语料库。采用BERT对农业问句进行字符编码,利用文本卷积神经网络(TextCNN)提取问句高维度特征对农业问句进行分类。【结果】在词向量对比实验中,BERT字向量与TextCNN结合时农业问句分类F1值达93.32%,相比Word2vec字向量提高2.1%。在深度学习模型的分类精度对比方面,TextCNN与Word2vec和BERT字向量结合的F1值分别达91.22%和93.32%,均优于其他模型。在农业问句的细分试验中,BERT-TextCNN在栽培技术、田间管理、土肥水管理和其他4个类别中分类F1值分别为86.06%、90.56%、95.04%和85.55%,均优于其他深度学习模型。超参数设置方面,BERT-TextCNN农业问句分类模型卷积核大小设为[3,4,5]、学习率设为5e-5、迭代次数设为5时效果最优,该模型在数据样本不均衡的情况下,对于农业问句的平均分类准确率依然能达93.00%以上,可满足农业智能问答系统的问句分类需求。【建议】通过阿里NLP等开源平台提升数据标注质量;在分类过程中补充词频和文档特征,提高模型分类精度;农业相关政府职能部门加强合作,积极探索农业技术数字化推广和服务新模式。 展开更多
关键词 农业问句 智能问答系统 问句分类 预训练语言模型(BERT) 文本卷积神经网络
下载PDF
基于字词向量融合的民航智慧监管短文本分类 被引量:1
2
作者 王欣 干镞锐 +2 位作者 许雅玺 史珂 郑涛 《中国安全科学学报》 CAS CSCD 北大核心 2024年第2期37-44,共8页
为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题... 为解决民航监管事项所产生的检查记录仅依靠人工进行分类分析导致效率低的问题,提出一种基于数据增强与字词向量融合的双通道特征提取的短文本分类模型,探讨民航监管事项的分类,包括与人、设备设施环境、制度程序和机构职责等相关问题。为解决类别不平衡问题,采用数据增强算法在原始文本上进行变换,生成新的样本,使各个类别的样本数量更加均衡。将字向量和词向量按字融合拼接,得到具有词特征信息的字向量。将字词融合的向量分别送入到文本卷积神经网络(TextCNN)和双向长短期记忆(BiLSTM)模型中进行不同维度的特征提取,从局部的角度和全局的角度分别提取特征,并在民航监管事项检查记录数据集上进行试验。结果表明:该模型准确率为0.9837,F 1值为0.9836。与一些字嵌入模型和词嵌入模型相对比,准确率提升0.4%。和一些常用的单通道模型相比,准确率提升3%,验证了双通道模型提取的特征具有全面性和有效性。 展开更多
关键词 字词向量融合 民航监管 短文本 文本卷积神经网络(textcnn) 双向长短期记忆(BiLSTM)
下载PDF
基于程序结构与语义特征融合的软件缺陷预测 被引量:1
3
作者 董玉坤 李浩杰 +1 位作者 位欣欣 唐道龙 《计算机工程与应用》 CSCD 北大核心 2022年第16期84-93,共10页
随着软件系统的规模越来越庞大,如何快速高效地预测软件中的程序缺陷成为一个研究热点。最近的研究引入了深度学习模型,使用神经网络提取代码特征构建分类器进行缺陷预测。针对现有的神经网络只在单层面、单粒度上提取代码特征,导致特... 随着软件系统的规模越来越庞大,如何快速高效地预测软件中的程序缺陷成为一个研究热点。最近的研究引入了深度学习模型,使用神经网络提取代码特征构建分类器进行缺陷预测。针对现有的神经网络只在单层面、单粒度上提取代码特征,导致特征不够丰富,造成预测精度不高的问题,提出了一种基于特征融合的软件缺陷预测框架。通过将程序解析为抽象语法树(abstract syntax tree,AST)以及Token序列两种不同的程序表示方式,利用树卷积神经网络以及文本卷积神经网络分别提取代码的结构和语义特征进行特征融合,从而提取到更丰富的代码特征用于缺陷预测。同时改进了AST和Token序列提取方法,降低模型复杂度。选择使用公共存储库PROMISE中的公开数据集作为实验数据集,采用softmax分类器预测得到最终的预测结果。实验结果表明,该框架在实验数据集上可以获得比已有方法更高的F1-score。 展开更多
关键词 软件缺陷预测 特征融合 树卷积神经网络(TBCNN) 文本卷积神经网络(textcnn)
下载PDF
基于多神经网络混合的短文本分类模型 被引量:5
4
作者 侯雪亮 李新 陈远平 《计算机系统应用》 2020年第10期9-19,共11页
文本分类指的是在制定文本的类别体系下,让计算机学会通过某种分类算法将待分类的内容完成分类的过程.与文本分类有关的算法已经被应用到了网页分类、数字图书馆、新闻推荐等领域.本文针对短文本分类任务的特点,提出了基于多神经网络混... 文本分类指的是在制定文本的类别体系下,让计算机学会通过某种分类算法将待分类的内容完成分类的过程.与文本分类有关的算法已经被应用到了网页分类、数字图书馆、新闻推荐等领域.本文针对短文本分类任务的特点,提出了基于多神经网络混合的短文本分类模型(Hybrid Short Text Classical Model Base on Multi-neural Networks).通过对短文本内容的关键词提取进行重构文本特征,并作为多神经网络模型的输入进行类别向量的融合,从而兼顾了FastText模型和TextCNN模型的特点.实验结果表明,相对于目前流行的文本分类算法而言,多神经网络混合的短本文分类模型在精确率、召回率和F1分数等多项指标上展现出了更加优越的算法性能. 展开更多
关键词 深度学习 短文本分类 关键词提取 特征重构 神经网络 Fasttext textcnn
下载PDF
基于RoBERTa-WWM的大学生论坛情感分析模型 被引量:15
5
作者 王曙燕 原柯 《计算机工程》 CAS CSCD 北大核心 2022年第8期292-298,305,共8页
大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本... 大学生论坛语句具有篇幅短、口语化、多流行用语等特点,传统的情感分析模型难以对其进行精准的语义特征表示,并且未充分关注语句的局部特征与上下文语境。提出一种基于RoBERTa-WWM的大学生情感分析模型。通过RoBERTa-WWM模型将论坛文本语句转化为语义特征表示,并将其输入到文本卷积神经网络中,以提取语句的局部语义特征,同时利用双向门控循环单元网络对局部语义特征进行双向处理,获得全面的上下文语义信息。在此基础上,通过Softmax分类器计算语句在情感标签中的概率向量,选择最大值表示的情感标签作为最终输出的情感标签。实验结果表明,相比RoBERTa-WWM、EK-INIT-CNN、BERT等模型,该模型在大学生论坛与NLPCC2014数据集上具有较优的分类性能,并且在大学生论坛数据集上宏平均精准率、宏平均召回率、宏平均F1值和微平均F1值分别为89.43%、90.43%、90.12%和92.48%。 展开更多
关键词 深度学习 大学生情感分析 RoBERTa-WWM模型 文本卷积神经网络 双向门控循环单元网络
下载PDF
旅游景点评论的情感分析和可视化系统研究及实现 被引量:2
6
作者 杜春 《信息与电脑》 2022年第24期154-157,共4页
首先,采用爬虫技术爬取旅游网站中景点的游客评论数据,并清洗数据,进行数据去重、数据去噪以及去停用词等操作,将文本数据转换成词向量。其次,利用文本卷积神经网络(Text Convolutional Neural Networks,TextCNN)训练一个情感分类模型,... 首先,采用爬虫技术爬取旅游网站中景点的游客评论数据,并清洗数据,进行数据去重、数据去噪以及去停用词等操作,将文本数据转换成词向量。其次,利用文本卷积神经网络(Text Convolutional Neural Networks,TextCNN)训练一个情感分类模型,并运用该模型对评论数据进行情感分析。最后,采用FlaskWeb技术开发一个旅游评论的情感分析和可视化系统。 展开更多
关键词 爬虫 旅游 文本卷积神经网络(textcnn) FLASK 情感分析
下载PDF
一种基于嵌入式注意力机制的文本分类方法
7
作者 熊宽 《软件》 2020年第6期171-176,共6页
大数据时代海量的文本数据蕴含着极大的科研价值,文本分类技术得到广泛的关注。文本分类在信息检索、自动问答等应用领域占据重要地位,是自然语言处理研究的关键技术之一。本文针对神经网络分类方法训练时间长性能仍可提高,提出一种嵌... 大数据时代海量的文本数据蕴含着极大的科研价值,文本分类技术得到广泛的关注。文本分类在信息检索、自动问答等应用领域占据重要地位,是自然语言处理研究的关键技术之一。本文针对神经网络分类方法训练时间长性能仍可提高,提出一种嵌入式注意力机制模块(Eam),用来增强已有的文本分类神经网络模型。该模块将重点关注数据中什么是最有意义及哪里含有的信息量更为丰富,从而高效提取文本中有价值的信息区域加速模型收敛。本文以增强TextCNN、ImdbCNN为例,在公开数据集IMDB上证明Eam的有效性,同等参数配置情况下能够提升模型的准确率、召回率及F1值,较原模型能够更快收敛减少训练时间。 展开更多
关键词 文本分类 神经网络 注意力机制 textcnn
下载PDF
基于BERT的多模型融合的Web攻击检测方法
8
作者 袁平宇 邱林 《计算机工程》 CAS 2024年第11期197-206,共10页
传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预... 传统Web攻击检测方法准确率不高,不能有效防范Web攻击。针对该问题,提出一种基于变换器的双向编码器表示(BERT)的预训练模型、文本卷积神经网络(TextCNN)和双向长短期记忆网络(BiLSTM)多模型融合的Web攻击检测方法。先将HTTP请求进行预处理,再通过BERT进行训练得到具备上下文依赖的特征向量,并用TextCNN模型进一步提取其中的高阶语义特征,作为BiLSTM的输入,最后利用Softmax函数进行分类检测。在HTTP CSIC 2010和恶意URL检测两个数据集上对所提方法进行验证,结果表明,与支持向量机(SVM)、逻辑回归(LR)等传统的机器学习方法和现有较新的方法相比,基于BERT的多模型融合的Web攻击检测方法在准确率、精确率、召回率和F1值指标上均表现更优(准确率和F1值的最优值都在99%以上),能准确检测Web攻击。 展开更多
关键词 Web攻击检测 基于变换器的双向编码器表示 多模型融合 HTTP请求 文本卷积神经网络 双向长短期记忆网络
下载PDF
语义分析在进出口商品申报信息智能判别场景中的应用
9
作者 马群凯 王齐 +2 位作者 冯立胜 李颖 赵碧君 《中国口岸科学技术》 2023年第S01期55-59,共5页
在海关缉私和税收等监管场景中,需要对进出口商品申报信息是否存在伪瞒报情况进行检查,存在传统人工判别效率相对较低,有效甄别单量较少等问题。为解决上述问题,本文引入语义分析方法,构建智能研判模型。首先开展语义分析在词汇、句子... 在海关缉私和税收等监管场景中,需要对进出口商品申报信息是否存在伪瞒报情况进行检查,存在传统人工判别效率相对较低,有效甄别单量较少等问题。为解决上述问题,本文引入语义分析方法,构建智能研判模型。首先开展语义分析在词汇、句子和篇章三个层面的理论研究,随后采用词向量、词嵌入、分词和文本卷积神经网络算法构建报关单商品申报智能归类模型。模型平均准确率达95.17%且未出现过拟合,取得较好应用效果。 展开更多
关键词 语义分析 文本卷积神经网络 机器学习 深度学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部