To address the difficulty of training high-quality models in some specific domains due to the lack of fine-grained annotation resources, we propose in this paper a knowledge-integrated cross-domain data generation met...To address the difficulty of training high-quality models in some specific domains due to the lack of fine-grained annotation resources, we propose in this paper a knowledge-integrated cross-domain data generation method for unsupervised domain adaptation tasks. Specifically, we extract domain features, lexical and syntactic knowledge from source-domain and target-domain data, and use a masking model with an extended masking strategy and a re-masking strategy to obtain domain-specific data that remove domain-specific features. Finally, we improve the sequence generation model BART and use it to generate high-quality target domain data for the task of aspect and opinion co-extraction from the target domain. Experiments were performed on three conventional English datasets from different domains, and our method generates more accurate and diverse target domain data with the best results compared to previous methods.展开更多
对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目...对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目标歧义词的各个词义获取词义领域标注作为词义领域知识;利用文本领域关联词和句子上下文词构建消歧图,并根据词义领域知识对消歧图进行调整;使用改进的图评分方法对消歧图的各个词义结点的重要度进行评分,选择正确的词义.该方法能有效地将领域知识整合到图模型中,在Koeling数据集上,取得了同类研究的最佳消歧效果.本文亦对多种图模型评分方法做了改进,进行了详细的对比实验研究.展开更多
Deep Web自动分类是建立深网数据集成系统的前提和基础。提出了一种基于领域特征文本的Deep Web分类方法。首先借助本体知识对表达同一语义的不同词汇进行了概念抽象,进而给出了领域相关度的定义,并将其作为特征文本选择的量化标准,避...Deep Web自动分类是建立深网数据集成系统的前提和基础。提出了一种基于领域特征文本的Deep Web分类方法。首先借助本体知识对表达同一语义的不同词汇进行了概念抽象,进而给出了领域相关度的定义,并将其作为特征文本选择的量化标准,避免了人为选取的主观性和不确定性;在接口向量模型构建中,考虑了不同特征文本对于分类作用的差异,提出了一种改进的W-TFIDF权重计算方法;最后采用KNN算法对接口向量进行了分类。对比实验证明,利用所提方法选择的特征文本是准确有效的,新的特征文本权重计算方法能显著地提高分类精度,且在KNN算法中表现出较好的稳定性。展开更多
文摘To address the difficulty of training high-quality models in some specific domains due to the lack of fine-grained annotation resources, we propose in this paper a knowledge-integrated cross-domain data generation method for unsupervised domain adaptation tasks. Specifically, we extract domain features, lexical and syntactic knowledge from source-domain and target-domain data, and use a masking model with an extended masking strategy and a re-masking strategy to obtain domain-specific data that remove domain-specific features. Finally, we improve the sequence generation model BART and use it to generate high-quality target domain data for the task of aspect and opinion co-extraction from the target domain. Experiments were performed on three conventional English datasets from different domains, and our method generates more accurate and diverse target domain data with the best results compared to previous methods.
文摘对领域知识挖掘利用的充分与否,直接影响到面向特定领域的词义消歧(Word sense disambiguation,WSD)的性能.本文提出一种基于领域知识的图模型词义消歧方法,该方法充分挖掘领域知识,为目标领域收集文本领域关联词作为文本领域知识,为目标歧义词的各个词义获取词义领域标注作为词义领域知识;利用文本领域关联词和句子上下文词构建消歧图,并根据词义领域知识对消歧图进行调整;使用改进的图评分方法对消歧图的各个词义结点的重要度进行评分,选择正确的词义.该方法能有效地将领域知识整合到图模型中,在Koeling数据集上,取得了同类研究的最佳消歧效果.本文亦对多种图模型评分方法做了改进,进行了详细的对比实验研究.