期刊文献+
共找到1,512篇文章
< 1 2 76 >
每页显示 20 50 100
Pyramid Separable Channel Attention Network for Single Image Super-Resolution
1
作者 Congcong Ma Jiaqi Mi +1 位作者 Wanlin Gao Sha Tao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4687-4701,共15页
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has... Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance. 展开更多
关键词 Deep learning single image super-resolution ARTIFACTS texture details
下载PDF
Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-imagefree phase retrieval from single-shot hologram
2
作者 Xuan Tian Runze Li +5 位作者 Tong Peng Yuge Xue Junwei Min Xing Li Chen Bai Baoli Yao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期22-38,共17页
Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,... Digital in-line holographic microscopy(DIHM)is a widely used interference technique for real-time reconstruction of living cells’morphological information with large space-bandwidth product and compact setup.However,the need for a larger pixel size of detector to improve imaging photosensitivity,field-of-view,and signal-to-noise ratio often leads to the loss of sub-pixel information and limited pixel resolution.Additionally,the twin-image appearing in the reconstruction severely degrades the quality of the reconstructed image.The deep learning(DL)approach has emerged as a powerful tool for phase retrieval in DIHM,effectively addressing these challenges.However,most DL-based strategies are datadriven or end-to-end net approaches,suffering from excessive data dependency and limited generalization ability.Herein,a novel multi-prior physics-enhanced neural network with pixel super-resolution(MPPN-PSR)for phase retrieval of DIHM is proposed.It encapsulates the physical model prior,sparsity prior and deep image prior in an untrained deep neural network.The effectiveness and feasibility of MPPN-PSR are demonstrated by comparing it with other traditional and learning-based phase retrieval methods.With the capabilities of pixel super-resolution,twin-image elimination and high-throughput jointly from a single-shot intensity measurement,the proposed DIHM approach is expected to be widely adopted in biomedical workflow and industrial measurement. 展开更多
关键词 optical microscopy quantitative phase imaging digital holographic microscopy deep learning super-resolution
下载PDF
From text to image:challenges in integrating vision into ChatGPT for medical image interpretation
3
作者 Shunsuke Koga Wei Du 《Neural Regeneration Research》 SCIE CAS 2025年第2期487-488,共2页
Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive te... Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023). 展开更多
关键词 image DIAGNOSIS text
下载PDF
Hyperspectral Image Super-Resolution Meets Deep Learning:A Survey and Perspective 被引量:3
4
作者 Xinya Wang Qian Hu +1 位作者 Yingsong Cheng Jiayi Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1668-1691,共24页
Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,w... Hyperspectral image super-resolution,which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation,aims to improve the spatial resolution of the hyperspectral image,which is beneficial for subsequent applications.The development of deep learning has promoted significant progress in hyperspectral image super-resolution,and the powerful expression capabilities of deep neural networks make the predicted results more reliable.Recently,several latest deep learning technologies have made the hyperspectral image super-resolution method explode.However,a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent.To this end,in this survey,we first introduce the concept of hyperspectral image super-resolution and classify the methods from the perspectives with or without auxiliary information.Then,we review the learning-based methods in three categories,including single hyperspectral image super-resolution,panchromatic-based hyperspectral image super-resolution,and multispectral-based hyperspectral image super-resolution.Subsequently,we summarize the commonly used hyperspectral dataset,and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively.Moreover,we briefly introduce several typical applications of hyperspectral image super-resolution,including ground object classification,urban change detection,and ecosystem monitoring.Finally,we provide the conclusion and challenges in existing learning-based methods,looking forward to potential future research directions. 展开更多
关键词 Deep learning hyperspectral image image fusion image super-resolution SURVEY
下载PDF
IRMIRS:Inception-ResNet-Based Network for MRI Image Super-Resolution 被引量:1
5
作者 Wazir Muhammad Zuhaibuddin Bhutto +3 位作者 Salman Masroor Murtaza Hussain Shaikh Jalal Shah Ayaz Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1121-1142,共22页
Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the r... Medical image super-resolution is a fundamental challenge due to absorption and scattering in tissues.These challenges are increasing the interest in the quality of medical images.Recent research has proven that the rapid progress in convolutional neural networks(CNNs)has achieved superior performance in the area of medical image super-resolution.However,the traditional CNN approaches use interpolation techniques as a preprocessing stage to enlarge low-resolution magnetic resonance(MR)images,adding extra noise in the models and more memory consumption.Furthermore,conventional deep CNN approaches used layers in series-wise connection to create the deeper mode,because this later end layer cannot receive complete information and work as a dead layer.In this paper,we propose Inception-ResNet-based Network for MRI Image Super-Resolution known as IRMRIS.In our proposed approach,a bicubic interpolation is replaced with a deconvolution layer to learn the upsampling filters.Furthermore,a residual skip connection with the Inception block is used to reconstruct a high-resolution output image from a low-quality input image.Quantitative and qualitative evaluations of the proposed method are supported through extensive experiments in reconstructing sharper and clean texture details as compared to the state-of-the-art methods. 展开更多
关键词 super-resolution magnetic resonance imaging ResNet block inception block convolutional neural network deconvolution layer
下载PDF
A generalized deep neural network approach for improving resolution of fluorescence microscopy images
6
作者 Zichen Jin Qing He +1 位作者 Yang Liu Kaige Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期53-65,共13页
Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural netwo... Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed,imaging resolution,and imagingflux.This paper proposes a deep neural network based on a generative adversarial network(GAN).The generator employs a U-Net-based network,which integrates Dense Net for the downsampling component.The proposed method has excellent properties,for example,the network model is trained with several different datasets of biological structures;the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging;and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets.In addition,experimental results showed that the method improved the resolution of caveolin-coated pits(CCPs)structures from 264 nm to 138 nm,a 1.91-fold increase,and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels. 展开更多
关键词 Deep learning super-resolution imaging generalized model framework generation adversarial networks image reconstruction.
下载PDF
Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory
7
作者 Ahmed H.Alhadethi Ikram Smaoui +1 位作者 Ahmed Fakhfakh Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2024年第6期4825-4844,共20页
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c... The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%. 展开更多
关键词 image transmission image compression text hiding Bezier curve Histogram of Oriented Gradients(HOG) LSTM image enhancement Gaussian noise ROTATION
下载PDF
Image Retrieval with Text Manipulation by Local Feature Modification 被引量:2
8
作者 查剑宏 燕彩蓉 +1 位作者 张艳婷 王俊 《Journal of Donghua University(English Edition)》 CAS 2023年第4期404-409,共6页
The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the qu... The demand for image retrieval with text manipulation exists in many fields, such as e-commerce and Internet search. Deep metric learning methods are used by most researchers to calculate the similarity between the query and the candidate image by fusing the global feature of the query image and the text feature. However, the text usually corresponds to the local feature of the query image rather than the global feature. Therefore, in this paper, we propose a framework of image retrieval with text manipulation by local feature modification(LFM-IR) which can focus on the related image regions and attributes and perform modification. A spatial attention module and a channel attention module are designed to realize the semantic mapping between image and text. We achieve excellent performance on three benchmark datasets, namely Color-Shape-Size(CSS), Massachusetts Institute of Technology(MIT) States and Fashion200K(+8.3%, +0.7% and +4.6% in R@1). 展开更多
关键词 image retrieval text manipulation ATTENTION local feature modification
下载PDF
An Efficient Text Recognition System from Complex Color Image for Helping the Visually Impaired Persons
9
作者 Ahmed Ben Atitallah Mohamed Amin Ben Atitallah +5 位作者 Yahia Said Mohammed Albekairi Anis Boudabous Turki MAlanazi Khaled Kaaniche Mohamed Atri 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期701-717,共17页
The challenge faced by the visually impaired persons in their day-today lives is to interpret text from documents.In this context,to help these people,the objective of this work is to develop an efficient text recogni... The challenge faced by the visually impaired persons in their day-today lives is to interpret text from documents.In this context,to help these people,the objective of this work is to develop an efficient text recognition system that allows the isolation,the extraction,and the recognition of text in the case of documents having a textured background,a degraded aspect of colors,and of poor quality,and to synthesize it into speech.This system basically consists of three algorithms:a text localization and detection algorithm based on mathematical morphology method(MMM);a text extraction algorithm based on the gamma correction method(GCM);and an optical character recognition(OCR)algorithm for text recognition.A detailed complexity study of the different blocks of this text recognition system has been realized.Following this study,an acceleration of the GCM algorithm(AGCM)is proposed.The AGCM algorithm has reduced the complexity in the text recognition system by 70%and kept the same quality of text recognition as that of the original method.To assist visually impaired persons,a graphical interface of the entire text recognition chain has been developed,allowing the capture of images from a camera,rapid and intuitive visualization of the recognized text from this image,and text-to-speech synthesis.Our text recognition system provides an improvement of 6.8%for the recognition rate and 7.6%for the F-measure relative to GCM and AGCM algorithms. 展开更多
关键词 text recognition system GCM AGCM OCR color images graphical interface
下载PDF
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
10
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction super-resolution singular value decomposition adaptive-threshold
下载PDF
Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review 被引量:3
11
作者 Kui Fu Jiansheng Peng +2 位作者 Hanxiao Zhang Xiaoliang Wang Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1977-1997,共21页
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ... Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR. 展开更多
关键词 Single image super-resolution generative adversarial networks deep learning computer vision
下载PDF
Single color image super-resolution using sparse representation and color constraint 被引量:2
12
作者 XU Zhigang MA Qiang YUAN Feixiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期266-271,共6页
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent... Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation. 展开更多
关键词 COLOR image sparse representation super-resolution L2/3 REGULARIZATION NORM COLOR channel CONSTRAINT
下载PDF
Better Visual Image Super-Resolution with Laplacian Pyramid of Generative Adversarial Networks 被引量:2
13
作者 Ming Zhao Xinhong Liu +1 位作者 Xin Yao Kun He 《Computers, Materials & Continua》 SCIE EI 2020年第9期1601-1614,共14页
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res... Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception. 展开更多
关键词 Single image super-resolution generative adversarial networks Laplacian pyramid
下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
14
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
下载PDF
Super-resolution processing of passive millimeter-wave images based on conjugate-gradient algorithm 被引量:1
15
作者 Li Liangchao Yang Jianyu Cui Guolong Wu Junjie Jiang Zhengmao Zheng Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期762-767,共6页
This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved ... This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging. 展开更多
关键词 passive millimeter wave imaging super-resolution conjugate-gradient spectral extrapolation.
下载PDF
Image super-resolution reconstruction based on sparse representation and residual compensation 被引量:1
16
作者 史郡 王晓华 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期394-399,共6页
A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the co... A super-resolution reconstruction algorithm is proposed. The algorithm is based on the idea of the sparse representation of signals, by using the fact that the sparsest representation of a sig- nal is unique as the constraint of the patched-based reconstruction, and compensating residual errors of the reconstruction results both locally and globally to solve the distortion problem in patch-based reconstruction algorithms. Three reconstruction algorithms are compared. The results show that the images reconstructed with the new algorithm have the best quality. 展开更多
关键词 super-resolution reconstruction sparse representation image patch residual compen-sation
下载PDF
Super-resolution processing of passive millimeter-wave images based on adaptive projected Landweber algorithm 被引量:1
17
作者 Zheng Xin Yang Jianyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期709-716,共8页
Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive p... Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive projected Landweber (APL) super-resolution algorithm using a spectral correction procedure, which attempts to combine the strong points of all of the projected Landweber (PL) iteration and the adaptive relaxation parameter adjustment and the spectral correction method, is proposed. In the algorithm, the PL iterations are implemented as the main image restoration scheme and a spectral correction method is included in which the calculated spectrum within the passband is replaced by the known low frequency component. Then, the algorithm updates the relaxation parameter adaptively at each iteration. A qualitative evaluation of this algorithm is performed with simulated data as well as actual radiometer image captured by 91.5 GHz mechanically scanned radiometer. From experiments, it is found that the super-resolution algorithm obtains better results and enhances the resolution and has lower mean square error (MSE). These constraints and adaptive character and spectral correction procedures speed up the convergence of the Landweber algorithm and reduce the ringing effects that are caused by regularizing the image restoration problem. 展开更多
关键词 passive millimeter wave imaging super-resolution Landweber algorithm inverse problems spectral extrapolation.
下载PDF
A brief survey on deep learning based image super-resolution 被引量:1
18
作者 Zhu Xiaobin Li Shanshan Wang Lei 《High Technology Letters》 EI CAS 2021年第3期294-302,共9页
Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this ... Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this work,a brief survey on recent advances of deep learning based single image super-resolution methods is systematically described.The existing studies of SR techniques are roughly grouped into ten major categories.Besides,some other important issues are also introduced,such as publicly available benchmark datasets and performance evaluation metrics.Finally,this survey is concluded by highlighting four future trends. 展开更多
关键词 image super-resolution(SR) deep learning convolutional neural network(CNN)
下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
19
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction super-resolution three-steptraining neural network BP algorithm vector mapping.
下载PDF
Multi-channel fast super-resolution image reconstruction based on matrix observation model
20
作者 刘洪臣 冯勇 李林静 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期239-246,共8页
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR re... A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper,which consists of three steps to avoid the computational complexity: a single image SR reconstruction step,a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore,we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally,the wavelet fusion is used to integrate all the registered highresolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity,and can be applied to large-dimension low-resolution images. 展开更多
关键词 super-resolution image reconstruction tensor product wavelet fusion
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部