In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation...The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.展开更多
Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified moni...Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified monitoring can help to detect ecological threats and changes earlier, but monitoring resources are limited. Participatory forest monitoring with the help of "citizen scientists" can provide additional resources for forest monitoring and at the same time help to communicate with stakeholders and the general public. Examples for citizen science projects in the forestry domain can be found but a solid, applicable larger framework to utilise public participation in the area of forest monitoring seems to be lacking. We propose that a better understanding of shared and related topics in citizen science and forest monitoring might be a first step towards such a framework. Methods: We conduct a systematic meta-analysis of 1015 publication abstracts addressing "forest monitoring" and "citizen science" in order to explore the combined topical landscape of these subjects. We employ 'topic modelling an unsupervised probabilistic machine learning method, to identify latent shared topics in the analysed publications. Results: We find that large shared topics exist, but that these are primarily topics that would be expected in scientific publications in general. Common domain-specific topics are under-represented and indicate a topical separation of the two document sets on "forest monitoring" and "citizen science" and thus the represented domains. While topic modelling as a method proves to be a scalable and useful analytical tool, we propose that our approach could deliver even more useful data if a larger document set and full-text publications would be available for analysis. Conclusions: We propose that these results, together with the observation of non-shared but related topics, point at under-utilised opportunities for public participation in forest monitoring. Citizen science could be applied as a versatile tool in forest ecosystems monitoring, complementing traditional forest monitoring programmes, assisting early threat recognition and helping to connect forest management with the general public. We conclude that our presented approach should be pursued further as it may aid the understanding and setup of citizen science efforts in the forest monitoring domain.展开更多
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.
基金supported in part by the Basic Public Welfare Research Program of Zhejiang Province under Grant LGF20G030001.
文摘The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.
文摘Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified monitoring can help to detect ecological threats and changes earlier, but monitoring resources are limited. Participatory forest monitoring with the help of "citizen scientists" can provide additional resources for forest monitoring and at the same time help to communicate with stakeholders and the general public. Examples for citizen science projects in the forestry domain can be found but a solid, applicable larger framework to utilise public participation in the area of forest monitoring seems to be lacking. We propose that a better understanding of shared and related topics in citizen science and forest monitoring might be a first step towards such a framework. Methods: We conduct a systematic meta-analysis of 1015 publication abstracts addressing "forest monitoring" and "citizen science" in order to explore the combined topical landscape of these subjects. We employ 'topic modelling an unsupervised probabilistic machine learning method, to identify latent shared topics in the analysed publications. Results: We find that large shared topics exist, but that these are primarily topics that would be expected in scientific publications in general. Common domain-specific topics are under-represented and indicate a topical separation of the two document sets on "forest monitoring" and "citizen science" and thus the represented domains. While topic modelling as a method proves to be a scalable and useful analytical tool, we propose that our approach could deliver even more useful data if a larger document set and full-text publications would be available for analysis. Conclusions: We propose that these results, together with the observation of non-shared but related topics, point at under-utilised opportunities for public participation in forest monitoring. Citizen science could be applied as a versatile tool in forest ecosystems monitoring, complementing traditional forest monitoring programmes, assisting early threat recognition and helping to connect forest management with the general public. We conclude that our presented approach should be pursued further as it may aid the understanding and setup of citizen science efforts in the forest monitoring domain.