期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合依存图卷积与文本片段搜索的方面情感三元组抽取
被引量:
4
1
作者
徐康
李霏
姬东鸿
《计算机工程》
CAS
CSCD
北大核心
2023年第4期61-67,共7页
现有基于序列标注或文本生成的三元组抽取模型通常未考虑完整文本片段级别的交互,且忽略了句法知识的应用。为解决上述问题,提出一种基于依存图卷积与文本片段搜索的深度学习模型来联合抽取方面情感三元组。通过预训练语言模型BERT编码...
现有基于序列标注或文本生成的三元组抽取模型通常未考虑完整文本片段级别的交互,且忽略了句法知识的应用。为解决上述问题,提出一种基于依存图卷积与文本片段搜索的深度学习模型来联合抽取方面情感三元组。通过预训练语言模型BERT编码层学习句子中每个单词的上下文表达,同时利用图卷积神经网络学习句子单词之间的依存关系和句法标签信息,以捕获远距离的方面词与观点词之间的语义关联关系,并采用文本片段搜索构造候选方面词与观点词及其特征表示,最终使用多个分类器同时进行方面词与观点词抽取及情感极性判断。在ASTE-Data-V2数据集上的实验结果表明,该模型在14res、14lap、15res和16res子集上的F1值相比于JET模型提升了10.61、10.54、4.91和8.48个百分点,具有较高的方面情感三元组抽取效率。
展开更多
关键词
方面情感三元组抽取
图卷积神经网络
深度学习
依存句法分析
文本片段搜索
下载PDF
职称材料
题名
结合依存图卷积与文本片段搜索的方面情感三元组抽取
被引量:
4
1
作者
徐康
李霏
姬东鸿
机构
武汉大学国家网络安全学院
出处
《计算机工程》
CAS
CSCD
北大核心
2023年第4期61-67,共7页
基金
国家自然科学基金(62176187)
国家重点研发计划(2017YFC1200500)
+2 种基金
教育部哲学社会科学研究重大课题攻关项目(18JZD015)
教育部人文社科青年基金(22YJCZH064)
湖北省自然科学基金(2021CFB385)。
文摘
现有基于序列标注或文本生成的三元组抽取模型通常未考虑完整文本片段级别的交互,且忽略了句法知识的应用。为解决上述问题,提出一种基于依存图卷积与文本片段搜索的深度学习模型来联合抽取方面情感三元组。通过预训练语言模型BERT编码层学习句子中每个单词的上下文表达,同时利用图卷积神经网络学习句子单词之间的依存关系和句法标签信息,以捕获远距离的方面词与观点词之间的语义关联关系,并采用文本片段搜索构造候选方面词与观点词及其特征表示,最终使用多个分类器同时进行方面词与观点词抽取及情感极性判断。在ASTE-Data-V2数据集上的实验结果表明,该模型在14res、14lap、15res和16res子集上的F1值相比于JET模型提升了10.61、10.54、4.91和8.48个百分点,具有较高的方面情感三元组抽取效率。
关键词
方面情感三元组抽取
图卷积神经网络
深度学习
依存句法分析
文本片段搜索
Keywords
Aspect Sentiment Triple Extraction(ASTE)
graph convolution neural network
deep learning
dependency syntactic parsing
text span search
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合依存图卷积与文本片段搜索的方面情感三元组抽取
徐康
李霏
姬东鸿
《计算机工程》
CAS
CSCD
北大核心
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部