The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have ...The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.展开更多
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit...With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.展开更多
Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( ...Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( PBS) and silk fibroin(SF) to produce fiber-based finely tuned porous architectures by weft and warp knittings. The obtained knitted constructs are described in terms of their morphology, mechanical properties,swelling ability,degradation behaviour,and cytotoxicity. Each type of polymer fibers allows for the processing of a very reproducible intra-architectural scaffold geometry,with distinct characteristics in terms of the surface physicochemistry,mechanical performance,and degradation capability,which has an impact on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity screening shows that both materials can support cell adhesion and proliferation. Furthermore, different surface modifications were performed( acid /alkaline treatment, UV radiation,and plasma) for modulating cell behavior. An increase of cell-material interactions were observed,indicating the important role of materials surface in the first hours of culturing. Human adipose-derived stem cells( hASCs) became an emerging possibility for regenerative medicine and tissue replacement therapies. The potential of the recently developed silk-based biotextile structures to promote hASCs adhesion,proliferation,and differentiation is also evaluated. The obtained results validate the developed constructs as viable matrices for TE applications. Given the processing efficacy and versatility of the knitting technology, and the interesting structural and surface properties of the proposed polymer fibers,it is foreseen that our developed systems can be attractive for the functional engineering of tissues such as bone,skin,ligaments or cartilage and also for develop more complex systems for further industrialization of TE products.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2232019G-01 and CUSFDH-D-2018026)the Shanghai Natural Science Foundation(20ZR1400500)。
文摘The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.
基金supported by the National Natural Science Foundation of China(62201243)Fundamental and Applied Research Grant of Guangdong Province(2021A1515110627)+3 种基金Southern University of Science and Technology(Y01796108,Y01796208)RGC Senior Research Fellow Scheme of Hong Kong(SRFS2122-5S04)the Hong Kong Polytechnic University(1-ZVQM),RI-Wear of PolyU(1-CD44)Shenzhen Science and Technology Innovation Committee(SGDX20210823103403033).
文摘With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.
文摘Textile-based technologies are considered as potential routes for the production of 3D porous architectures for tissue engineering( TE) applications. We describe the use of two polymers,namely polybutylene succinate( PBS) and silk fibroin(SF) to produce fiber-based finely tuned porous architectures by weft and warp knittings. The obtained knitted constructs are described in terms of their morphology, mechanical properties,swelling ability,degradation behaviour,and cytotoxicity. Each type of polymer fibers allows for the processing of a very reproducible intra-architectural scaffold geometry,with distinct characteristics in terms of the surface physicochemistry,mechanical performance,and degradation capability,which has an impact on the resulting cell behaviour at the surface of the respective biotextiles. Preliminary cytotoxicity screening shows that both materials can support cell adhesion and proliferation. Furthermore, different surface modifications were performed( acid /alkaline treatment, UV radiation,and plasma) for modulating cell behavior. An increase of cell-material interactions were observed,indicating the important role of materials surface in the first hours of culturing. Human adipose-derived stem cells( hASCs) became an emerging possibility for regenerative medicine and tissue replacement therapies. The potential of the recently developed silk-based biotextile structures to promote hASCs adhesion,proliferation,and differentiation is also evaluated. The obtained results validate the developed constructs as viable matrices for TE applications. Given the processing efficacy and versatility of the knitting technology, and the interesting structural and surface properties of the proposed polymer fibers,it is foreseen that our developed systems can be attractive for the functional engineering of tissues such as bone,skin,ligaments or cartilage and also for develop more complex systems for further industrialization of TE products.