期刊文献+
共找到30,966篇文章
< 1 2 250 >
每页显示 20 50 100
Method to Remove Handwritten Texts Using Smart Phone
1
作者 Haiquan Fang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期12-21,共10页
To remove handwritten texts from an image of a document taken by smart phone,an intelligent removal method was proposed that combines dewarping and Fully Convolutional Network with Atrous Convolutional and Atrous Spat... To remove handwritten texts from an image of a document taken by smart phone,an intelligent removal method was proposed that combines dewarping and Fully Convolutional Network with Atrous Convolutional and Atrous Spatial Pyramid Pooling(FCN-AC-ASPP).For a picture taken by a smart phone,firstly,the image is transformed into a regular image by the dewarping algorithm.Secondly,the FCN-AC-ASPP is used to classify printed texts and handwritten texts.Lastly,handwritten texts can be removed by a simple algorithm.Experiments show that the classification accuracy of the FCN-AC-ASPP is better than FCN,DeeplabV3+,FCN-AC.For handwritten texts removal effect,the method of combining dewarping and FCN-AC-ASPP is superior to FCN-AC-ASP alone. 展开更多
关键词 handwritten texts printed texts CLASSIFICATION FCN-AC-ASPP smart phone
下载PDF
A Comparative Study of Artificial Intelligence and Translation Software in Chinese-English Translation:A Focus on Literary and Technical Texts
2
作者 LIU Yong-shan 《Journal of Literature and Art Studies》 2024年第9期815-820,共6页
In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of trans... In recent years,the domain of machine translation has experienced remarkable growth,particularly with the emergence of neural machine translation,which has significantly enhanced both the accuracy and fluency of translation.At the same time,AI also showed its tremendous advancement,with its capabilities now extending to assisting users in a multitude of tasks,including translation,garnering attention across various sectors.In this paper,the author selects representative sentences from both literary and scientific texts,and translates them using two translation software and two AI tools for comparison.The results show that all four translation tools are very efficient and can help with simple translation tasks.However,the accuracy of terminology needs to be improved,and it is difficult to make adjustments based on the characteristics of the target language.It is worth mentioning that one of the advantages of AI is its interactivity,which allows it to modify the translation according to the translator’s needs. 展开更多
关键词 Artificial Intelligence translation software literary texts technical texts
下载PDF
Study on the Textual Coherence Function of Conjunctions in Political Texts and Their Translation Reconstruction
3
作者 Goya Guli Kader Jingwen Qiao Aixia Yang 《Journal of Contemporary Educational Research》 2024年第1期25-30,共6页
The assessment of translation quality in political texts is primarily based on achieving effective communication.Throughout the translation process,it is essential to not only accurately convey the original content bu... The assessment of translation quality in political texts is primarily based on achieving effective communication.Throughout the translation process,it is essential to not only accurately convey the original content but also effectively transform the structural mechanisms of the source language.In the translation reconstruction of political texts,various textual cohesion methods are often employed,with conjunctions serving as a primary means for semantic coherence within text units. 展开更多
关键词 Political texts CONJUNCTIONS textual cohesion Chinese to Russian translation
下载PDF
基于改进TextRank的科技文本关键词抽取方法
4
作者 杨冬菊 胡成富 《计算机应用》 CSCD 北大核心 2024年第6期1720-1726,共7页
针对科技文本关键词抽取任务中抽取出现次数少但能较好表达文本主旨的词语效果差的问题,提出一种基于改进TextRank的关键词抽取方法。首先,利用词语的词频-逆文档频率(TF-IDF)统计特征和位置特征优化共现图中词语间的概率转移矩阵,通过... 针对科技文本关键词抽取任务中抽取出现次数少但能较好表达文本主旨的词语效果差的问题,提出一种基于改进TextRank的关键词抽取方法。首先,利用词语的词频-逆文档频率(TF-IDF)统计特征和位置特征优化共现图中词语间的概率转移矩阵,通过迭代计算得到词语的初始得分;然后,利用K-Core(K-Core decomposition)算法挖掘KCore子图得到词语的层级特征,利用平均信息熵特征衡量词语的主题表征能力;最后,在词语初始得分的基础上融合层级特征和平均信息熵特征,从而确定关键词。实验结果表明,在公开数据集上,与TextRank方法和OTextRank(Optimized TextRank)方法相比,所提方法在抽取不同关键词数量的实验中,F1均值分别提高了6.5和3.3个百分点;在科技服务项目数据集上,与TextRank方法和OTextRank方法相比,所提方法在抽取不同关键词数量的实验中,F1均值分别提高了7.4和3.2个百分点。实验结果验证了所提方法抽取出现频率低但较好表达文本主旨关键词的有效性。 展开更多
关键词 科技文本 关键词抽取 textRank K-Core图 平均信息熵
下载PDF
Deep-BERT:Transfer Learning for Classifying Multilingual Offensive Texts on Social Media 被引量:2
5
作者 Md.Anwar Hussen Wadud M.F.Mridha +2 位作者 Jungpil Shin Kamruddin Nur Aloke Kumar Saha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1775-1791,共17页
Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze ... Offensive messages on social media,have recently been frequently used to harass and criticize people.In recent studies,many promising algorithms have been developed to identify offensive texts.Most algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in sentences.In addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive texts.In this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass others.This paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based approaches.Then,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts. 展开更多
关键词 Offensive text classification deep convolutional neural network(DCNN) bidirectional encoder representations from transformers(BERT) natural language processing(NLP)
下载PDF
一种利用词典扩展数据库模式信息的Text2SQL方法
6
作者 于晓昕 何东 +2 位作者 叶子铭 陈黎 于中华 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期78-88,共11页
现有Text2SQL方法严重依赖表名和列名在自然语言查询中的显式提及,在同物异名的实际应用场景中准确率急剧下降.此外,这些方法仅仅依赖数据库模式捕捉数据库建模的领域知识,而数据库模式作为结构化的元数据,其表达领域知识的能力是非常... 现有Text2SQL方法严重依赖表名和列名在自然语言查询中的显式提及,在同物异名的实际应用场景中准确率急剧下降.此外,这些方法仅仅依赖数据库模式捕捉数据库建模的领域知识,而数据库模式作为结构化的元数据,其表达领域知识的能力是非常有限的,即使有经验的程序员也很难仅从数据库模式完全领会该数据库建模的领域知识,因此程序员必须依赖详细的数据库设计文档才能构造SQL语句以正确地表达特定的查询.为此,本文提出一种利用词典扩展数据库模式信息的Text2SQL方法,该方法从数据库表名和列名解析出其中的单词或短语,查询词典获取这些单词或短语的语义解释,将这些解释看成是相应表名或列名的扩展内容,与表名、列名及其他数据库模式信息(主键、外键等)相结合,作为模型的输入,从而使模型能够更全面地学习数据库建模的应用领域知识.在Spider-syn和Spider数据集上进行的实验说明了所提出方法的有效性,即使自然语言查询中使用的表名和列名与数据库模式中对应的表名和列名完全不同,本文方法也能够得到较好的SQL翻译结果,明显优于最新提出的抗同义词替换攻击的方法. 展开更多
关键词 数据库模式 语义扩展 解释信息 text2SQL
下载PDF
基于DAN与FastText的藏文短文本分类研究
7
作者 李果 陈晨 +1 位作者 杨进 群诺 《计算机科学》 CSCD 北大核心 2024年第S01期103-107,共5页
随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行... 随着藏文信息不断融入社会生活,越来越多的藏文短文本数据存在网络平台上。针对传统分类方法在藏文短文本上分类性能低的问题,文中提出了一种基于DAN-FastText的藏文短文本分类模型。该模型使用FastText网络在较大规模的藏文语料上进行无监督训练获得预训练的藏文音节向量集,使用预训练的音节向量集将藏文短文本信息转化为音节向量,把音节向量送入DAN(Deep Averaging Networks)网络并在输出阶段融合经过FastText网络训练的句向量特征,最后通过全连接层和softmax层完成分类。在公开的TNCC(Tibetan News Classification Corpus)新闻标题数据集上所提模型的Macro-F1是64.53%,比目前最好评测结果TiBERT模型的Macro-F1得分高出2.81%,比GCN模型的Macro-F1得分高出6.14%,融合模型具有较好的藏文短文本分类效果。 展开更多
关键词 藏文短文本分类 特征融合 深度平均网络 快速文本
下载PDF
Short-Term Memory Capacity across Time and Language Estimated from Ancient and Modern Literary Texts. Study-Case: New Testament Translations
8
作者 Emilio Matricciani 《Open Journal of Statistics》 2023年第3期379-403,共25页
We study the short-term memory capacity of ancient readers of the original New Testament written in Greek, of its translations to Latin and to modern languages. To model it, we consider the number of words between any... We study the short-term memory capacity of ancient readers of the original New Testament written in Greek, of its translations to Latin and to modern languages. To model it, we consider the number of words between any two contiguous interpunctions I<sub>p</sub>, because this parameter can model how the human mind memorizes “chunks” of information. Since I<sub>P</sub> can be calculated for any alphabetical text, we can perform experiments—otherwise impossible— with ancient readers by studying the literary works they used to read. The “experiments” compare the I<sub>P</sub> of texts of a language/translation to those of another language/translation by measuring the minimum average probability of finding joint readers (those who can read both texts because of similar short-term memory capacity) and by defining an “overlap index”. We also define the population of universal readers, people who can read any New Testament text in any language. Future work is vast, with many research tracks, because alphabetical literatures are very large and allow many experiments, such as comparing authors, translations or even texts written by artificial intelligence tools. 展开更多
关键词 Alphabetical Languages Artificial Intelligence Writing GREEK LATIN New Testament Readers Overlap Probability Short-Term Memory Capacity texts Translation Words Interval
下载PDF
基于BERT和TextCNN的智能制造成熟度评估方法 被引量:1
9
作者 张淦 袁堂晓 +1 位作者 汪惠芬 柳林燕 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期852-863,共12页
随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,... 随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,设计了一种新的评估流程,采用文本处理算法对整个评估过程进行了重构,通过利用国标文件中智能制造成熟度评估标准,将其作为训练集,采用基于预训练语言模型与文本神经网络(BERT+TextCNN)相结合的智能评估算法代替人工评估。在真实的企业智能制造数据集上的验证表明,当BERT+TextCNN评估模型在卷积核为[2,3,4]、迭代次数为6次、学习率为3e-5时,对智能制造成熟度进行评估,准确率达到85.32%。这表明所设计的评估方法能够较准确地帮助企业完成智能制造成熟度自评估,有助于企业了解自身智能制造能力水平,制定正确的发展方向。 展开更多
关键词 智能制造成熟度模型 BERT预训练语言模型 文本卷积神经网络 评估过程重构
下载PDF
Social Media Cyberbullying Detection on Political Violence from Bangla Texts Using Machine Learning Algorithm
10
作者 Md. Tofael Ahmed Almas Hossain Antar +3 位作者 Maqsudur Rahman Abu Zafor Muhammad Touhidul Islam Dipankar Das Md. Golam Rashed 《Journal of Intelligent Learning Systems and Applications》 2023年第4期108-122,共15页
When someone threatens or humiliates another person online by sending those unpleasant messages or comments, this is known as Cyberbullying. Recently, Bangla text has been used much more often on social media. People ... When someone threatens or humiliates another person online by sending those unpleasant messages or comments, this is known as Cyberbullying. Recently, Bangla text has been used much more often on social media. People communicate with others on social media through messages and comments. So bullies use social media as a rich environment to bully others, especially on political issues. Fights over Cyberbullying on political and social media posts are common today. Most of the time, it does a lot of damage. However, few works have been done for monitoring Bangla text on social media & no work has been done yet for detecting the bullying Bangla text on political issues due to the lack of annotated corpora and morphologic analyzers. In this work, we used several machine learning classifiers & a model. That will help to detect the Bangla bullying texts on social media. For this work, 11,000 Bangla texts have been collected from the comments section of political Facebook posts to make a new dataset and labelled the data as either bullied or not. This dataset has been used to train the machine learning classifier. The results indicate that Random Forest achieves superior accuracy of 91.08%. 展开更多
关键词 CYBERBULLYING Bangla texts Political Issues Machine Learning Random Forest Social Media
下载PDF
树立行业发展新方向——Techtextil&Texprocess 2024亮点回顾
11
作者 张娜 王佳月 赵永霞 《纺织导报》 CAS 2024年第3期41-50,共10页
为期4天的法兰克福国际产业用纺织品及非织造布展览会及国际纺织品及柔性材料缝制加工展览会(Techtextil&Texprocess 2024)吸引了来自全球53个国家和地区的1700家领先企业参展和来自102个国家和地区的38000名观众,展会规模再创新高... 为期4天的法兰克福国际产业用纺织品及非织造布展览会及国际纺织品及柔性材料缝制加工展览会(Techtextil&Texprocess 2024)吸引了来自全球53个国家和地区的1700家领先企业参展和来自102个国家和地区的38000名观众,展会规模再创新高,充分彰显了纺织行业蓬勃的生命力与持续的创新力。 展开更多
关键词 产业用纺织品 纺织行业 柔性材料 国际纺织品 展会规模 发展新方向 text 法兰克福
下载PDF
Identifying multidisciplinary problems from scientific publications based on a text generation method
12
作者 Ziyan Xu Hongqi Han +2 位作者 Linna Li Junsheng Zhang Zexu Zhou 《Journal of Data and Information Science》 CSCD 2024年第3期213-237,共25页
Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the... Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the research objective types and disciplinary labels of papers using a text classification technique;second,it generates abstractive titles for each paper based on abstract and research objective types using a generative pre-trained language model;third,it extracts problem phrases from generated titles according to regular expression rules;fourth,it creates problem relation networks and identifies the same problems by exploiting a weighted community detection algorithm;finally,it identifies multidisciplinary problems based on the disciplinary labels of papers.Findings:Experiments in the“Carbon Peaking and Carbon Neutrality”field show that the proposed method can effectively identify multidisciplinary research problems.The disciplinary distribution of the identified problems is consistent with our understanding of multidisciplinary collaboration in the field.Research limitations:It is necessary to use the proposed method in other multidisciplinary fields to validate its effectiveness.Practical implications:Multidisciplinary problem identification helps to gather multidisciplinary forces to solve complex real-world problems for the governments,fund valuable multidisciplinary problems for research management authorities,and borrow ideas from other disciplines for researchers.Originality/value:This approach proposes a novel multidisciplinary problem identification method based on text generation,which identifies multidisciplinary problems based on generative abstractive titles of papers without data annotation required by standard sequence labeling techniques. 展开更多
关键词 Problem identification MULTIDISCIPLINARY text generation text classification
下载PDF
CVTD: A Robust Car-Mounted Video Text Detector
13
作者 Di Zhou Jianxun Zhang +2 位作者 Chao Li Yifan Guo Bowen Li 《Computers, Materials & Continua》 SCIE EI 2024年第2期1821-1842,共22页
Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted vid... Text perception is crucial for understanding the semantics of outdoor scenes,making it a key requirement for building intelligent systems for driver assistance or autonomous driving.Text information in car-mounted videos can assist drivers in making decisions.However,Car-mounted video text images pose challenges such as complex backgrounds,small fonts,and the need for real-time detection.We proposed a robust Car-mounted Video Text Detector(CVTD).It is a lightweight text detection model based on ResNet18 for feature extraction,capable of detecting text in arbitrary shapes.Our model efficiently extracted global text positions through the Coordinate Attention Threshold Activation(CATA)and enhanced the representation capability through stacking two Feature Pyramid Enhancement Fusion Modules(FPEFM),strengthening feature representation,and integrating text local features and global position information,reinforcing the representation capability of the CVTD model.The enhanced feature maps,when acted upon by Text Activation Maps(TAM),effectively distinguished text foreground from non-text regions.Additionally,we collected and annotated a dataset containing 2200 images of Car-mounted Video Text(CVT)under various road conditions for training and evaluating our model’s performance.We further tested our model on four other challenging public natural scene text detection benchmark datasets,demonstrating its strong generalization ability and real-time detection speed.This model holds potential for practical applications in real-world scenarios. 展开更多
关键词 Deep learning text detection Car-mounted video text detector intelligent driving assistance arbitrary shape text detector
下载PDF
From text to image:challenges in integrating vision into ChatGPT for medical image interpretation
14
作者 Shunsuke Koga Wei Du 《Neural Regeneration Research》 SCIE CAS 2025年第2期487-488,共2页
Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive te... Large language models(LLMs),such as ChatGPT developed by OpenAI,represent a significant advancement in artificial intelligence(AI),designed to understand,generate,and interpret human language by analyzing extensive text data.Their potential integration into clinical settings offers a promising avenue that could transform clinical diagnosis and decision-making processes in the future(Thirunavukarasu et al.,2023).This article aims to provide an in-depth analysis of LLMs’current and potential impact on clinical practices.Their ability to generate differential diagnosis lists underscores their potential as invaluable tools in medical practice and education(Hirosawa et al.,2023;Koga et al.,2023). 展开更多
关键词 IMAGE DIAGNOSIS text
下载PDF
Text-to-SQL文本信息处理技术研究综述 被引量:1
15
作者 彭钰寒 乔少杰 +5 位作者 薛骐 李江敏 谢添丞 徐康镭 冉黎琼 曾少北 《无线电工程》 2024年第5期1053-1062,共10页
信号与信息处理的需求日益增加,离不开数据处理技术,数据处理需要数据库的支持,然而没有经过训练的使用者会因为不熟悉数据库操作产生诸多问题。文本转结构化查询语言(Text to Structured Query Language,Text-to-SQL)的出现,使用户无... 信号与信息处理的需求日益增加,离不开数据处理技术,数据处理需要数据库的支持,然而没有经过训练的使用者会因为不熟悉数据库操作产生诸多问题。文本转结构化查询语言(Text to Structured Query Language,Text-to-SQL)的出现,使用户无需掌握结构化查询语言(Structured Query Language,SQL)也能够熟练操作数据库。介绍Text-to-SQL的研究背景及面临的挑战;介绍Text-to-SQL关键技术、基准数据集、模型演变及最新研究进展,关键技术包括Transformer等主流技术,用于模型训练的基准数据集包括WikiSQL和Spider;介绍Text-to-SQL不同阶段模型的特点,详细阐述Text-to-SQL最新研究成果的工作原理,包括模型构建、解析器设计及数据集生成;总结Text-to-SQL未来的发展方向及研究重点。 展开更多
关键词 文本转结构化查询语言 解析器 文本信息处理 数据库 深度学习
下载PDF
YOLOv5ST:A Lightweight and Fast Scene Text Detector
16
作者 Yiwei Liu Yingnan Zhao +2 位作者 Yi Chen Zheng Hu Min Xia 《Computers, Materials & Continua》 SCIE EI 2024年第4期909-926,共18页
Scene text detection is an important task in computer vision.In this paper,we present YOLOv5 Scene Text(YOLOv5ST),an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text detection.Our primary goal ... Scene text detection is an important task in computer vision.In this paper,we present YOLOv5 Scene Text(YOLOv5ST),an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text detection.Our primary goal is to enhance inference speed without sacrificing significant detection accuracy,thereby enabling robust performance on resource-constrained devices like drones,closed-circuit television cameras,and other embedded systems.To achieve this,we propose key modifications to the network architecture to lighten the original backbone and improve feature aggregation,including replacing standard convolution with depth-wise convolution,adopting the C2 sequence module in place of C3,employing Spatial Pyramid Pooling Global(SPPG)instead of Spatial Pyramid Pooling Fast(SPPF)and integrating Bi-directional Feature Pyramid Network(BiFPN)into the neck.Experimental results demonstrate a remarkable 26%improvement in inference speed compared to the baseline,with only marginal reductions of 1.6%and 4.2%in mean average precision(mAP)at the intersection over union(IoU)thresholds of 0.5 and 0.5:0.95,respectively.Our work represents a significant advancement in scene text detection,striking a balance between speed and accuracy,making it well-suited for performance-constrained environments. 展开更多
关键词 Scene text detection YOLOv5 LIGHTWEIGHT object detection
下载PDF
Research on Translation Strategies of Political Texts for International Publicity from the Perspective of Eco-Translatology
17
作者 Jia Yang Chengjing Li 《Journal of Contemporary Educational Research》 2023年第12期64-70,共7页
Eco-translatology provides a new perspective and methodology for the international publicity translation of political texts.This paper applies the viewpoint and methodology of eco-translatology,focuses on the three-di... Eco-translatology provides a new perspective and methodology for the international publicity translation of political texts.This paper applies the viewpoint and methodology of eco-translatology,focuses on the three-dimensional transformation of language,culture,and communication,and discusses how translators can adapt to the eco-environment of political texts through the specific example of the keynote speech of China’s president at the opening ceremony of the Third Belt and Road Forum for International Cooperation and select suitable translation strategies and techniques to achieve an ecological balance of the target text in multiple dimensions. 展开更多
关键词 ECO-TRANSLATOLOGY Three-dimensional transformation Political texts International publicity translation
下载PDF
Relational Turkish Text Classification Using Distant Supervised Entities and Relations
18
作者 Halil Ibrahim Okur Kadir Tohma Ahmet Sertbas 《Computers, Materials & Continua》 SCIE EI 2024年第5期2209-2228,共20页
Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved throu... Text classification,by automatically categorizing texts,is one of the foundational elements of natural language processing applications.This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata(Wikipedia database)database and BERTbased pre-trained Named Entity Recognition(NER)models.Focusing on a significant challenge in the field of natural language processing(NLP),the research evaluates the potential of using entity and relational information to extract deeper meaning from texts.The adopted methodology encompasses a comprehensive approach that includes text preprocessing,entity detection,and the integration of relational information.Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms,such as Support Vector Machine,Logistic Regression,Deep Neural Network,and Convolutional Neural Network.The results indicate that the integration of entity-relation information can significantly enhance algorithmperformance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications.Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification,the development of a Turkish relational text classification approach,and the creation of a relational database.By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification,this research aims to support the effectiveness of text-based artificial intelligence(AI)tools.Additionally,it makes significant contributions to the development ofmultilingual text classification systems by adding deeper meaning to text content,thereby providing a valuable addition to current NLP studies and setting an important reference point for future research. 展开更多
关键词 text classification relation extraction NER distant supervision deep learning machine learning
下载PDF
Assessing trends in wildland-urban interface fire research through text mining: a comprehensive analysis of published literature
19
作者 Hafsae Lamsaf Asmae Lamsaf +1 位作者 Mounir A.Kerroum Miguel Almeida 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期102-114,共13页
Research on fires at the wildland-urban inter-face(WUI)has generated significant insights and advance-ments across various fields of study.Environmental,agri-culture,and social sciences have played prominent roles in ... Research on fires at the wildland-urban inter-face(WUI)has generated significant insights and advance-ments across various fields of study.Environmental,agri-culture,and social sciences have played prominent roles in understanding the impacts of fires in the environment,in protecting communities,and addressing management challenges.This study aimed to create a database using a text mining technique for global researchers interested in WUI-projects and highlighting the interest of countries in this field.Author’s-Keywords analysis emphasized the dominance of fire science-related terms,especially related to WUI,and identified keyword clusters related to the WUI fire-risk-assessment-system-“exposure”,“danger”,and“vulnerability”within wildfire research.Trends over the past decade showcase shifting research interests with a growing focus on WUI fires,while regional variations highlighted that the“exposure”keyword cluster received greater atten-tion in the southern Europe and South America.However,vulnerability keywords have relatively a lower representation across all regions.The analysis underscores the interdisci-plinary nature of WUI research and emphasizes the need for targeted approaches to address the unique challenges of the wildland-urban interface.Overall,this study provides valu-able insights for researchers and serves as a foundation for further collaboration in this field through the understanding of the trends over recent years and in different regions. 展开更多
关键词 WUI text mining WILDFIRES Fire science State of the art Scientific publications
下载PDF
Leveraging Uncertainty for Depth-Aware Hierarchical Text Classification
20
作者 Zixuan Wu Ye Wang +2 位作者 Lifeng Shen Feng Hu Hong Yu 《Computers, Materials & Continua》 SCIE EI 2024年第9期4111-4127,共17页
Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to th... Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively. 展开更多
关键词 Hierarchical text classification incomplete text-label matching UNCERTAINTY depth-aware early stopping strategy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部