Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a...Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.展开更多
Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matchin...Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on a large amount of high-resolution remote sensing image data and the characteristics of clear image texture.123123The method includes 4 parts:①Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;②Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;③Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;④Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.展开更多
Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matchin...Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on the large amount of high-resolution remote sensing image data and the characteristics of clear image texture.The method includes 4 parts:(1)Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;(2)Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;(3)Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;(4)Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.展开更多
In the proposed paper,a parallel structure type Generative Adversarial Network(GAN)using edge and texture information is proposed.In the existing GAN-based model,many learning iterations had to be given to obtaining a...In the proposed paper,a parallel structure type Generative Adversarial Network(GAN)using edge and texture information is proposed.In the existing GAN-based model,many learning iterations had to be given to obtaining an output that was somewhat close to the original data,and noise and distortion occurred in the output image even when learning was performed.To solve this problem,the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure.In the network,each edge information and texture information were received as inputs,learning was performed,and each character was combined and outputted through the Combine Discriminator.Through this,edge information and distortion of the output image were improved even with fewer iterations than DCGAN,which is the existing GAN-based model.As a result of learning on the network of the proposed model,a clear image with improved contour and distortion of objects in the image was output from about 50,000 iterations.展开更多
The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information perform...The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms.展开更多
基金supported by the National Natural Science Foundation of China(No.52074123)the Natural Science Foundation of Hebei Province(Nos.E2022209143,E2021209148 and E2021209052).
文摘Users of the digital image correlation method are faced with the problem of poor operability,low repeatability,and lack of standardized specifications for spraying speckles.To solve the problem,the research proposed a rock deformation measurement method that obviates the need to spray speckles.A local binary model was established by using the local binary pattern(LBP)operator based on deep texture features on rock surfaces.The resulting LBP digital speckle pattern can substitute artificial speckle patterns and demonstrates high quality and strong applicability.Based on the LBP digital speckle pattern,the target tracking algorithm was employed to achieve non-contact measurement of the dynamic displacements of rocks.The feasibility and effectiveness of the algorithm in practical application were verified by conducting shear tests on granite and siltstone.Test results show that the deformation characteristics in the displacement nephograms are in line with the measured data pertaining to rock fracturing and conform to the basic characteristics of the shear failure of rocks.The deformation measurement method based on surface texture information can realize non-contact displacement measurement of rocks under conditions without speckles:this obviates the influence of the quality of sprayed speckles on the accuracy of the measurement of deformation.
基金National Natural Science Foundation of China(41871367)Ministry of Science and Technology of the People’s Republic of China(2018YFE0206100)。
文摘Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on a large amount of high-resolution remote sensing image data and the characteristics of clear image texture.123123The method includes 4 parts:①Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;②Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;③Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;④Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.
基金The National Key Research and Development Program of China(No.2016YFB0500304)The Fund of Beijing Key Laboratory of Urban Spatial Information Engineering(No.2017212)The Advanced Project of Urban Design Big Data Acquisition and Processing(30059917306)
文摘Dense matching of remote sensing images is a key step in the generation of accurate digital surface models.The semi-global matching algorithm comprehensively considers the advantages and disadvantages of local matching and global matching in terms of matching effect and computational efficiency,so it is widely used in close-range,aerial and satellite image matching.Based on the analysis of the original semi-global matching algorithm,this paper proposes a semi-global high-resolution remote sensing image that takes into account the geometric constraints of the connection points and the image texture information based on the large amount of high-resolution remote sensing image data and the characteristics of clear image texture.The method includes 4 parts:(1)Precise orientation.Aiming at the system error in the image orientation model,the system error of the rational function model is compensated by the geometric constraint relationship of the connecting points between the images,and the sub-pixel positioning accuracy is obtained;(2)Epipolar image generation.After the original image is divided into blocks,the epipolar image is generated based on the projection trajectory method;(3)Image dense matching.In order to reduce the size of the cost space and calculation time,the image is pyramided and then semi-globally matched layer by layer.In the matching process,the disparity map expansion and erosion algorithm that takes into account the image texture information is introduced to restrict the disparity search range and better retain the edge characteristics of the ground objects;(4)Generate DSM.In order to test the matching effect,the weighted median filter algorithm is used to filter the disparity map,and the DSM is obtained based on the principle of forward intersection.Finally,the paper uses the matching results of WordView3 and Ziyuan No.3 stereo image to verify the effectiveness of this method.
基金supported by the Mid-Career Researcher program through the National Research Foundation of Korea(NRF)funded by the MSIT(Ministry of Science and ICT)under Grant 2020R1A2C2014336.
文摘In the proposed paper,a parallel structure type Generative Adversarial Network(GAN)using edge and texture information is proposed.In the existing GAN-based model,many learning iterations had to be given to obtaining an output that was somewhat close to the original data,and noise and distortion occurred in the output image even when learning was performed.To solve this problem,the proposed model consists of two generators and three discriminators to propose a network in the form of a parallel structure.In the network,each edge information and texture information were received as inputs,learning was performed,and each character was combined and outputted through the Combine Discriminator.Through this,edge information and distortion of the output image were improved even with fewer iterations than DCGAN,which is the existing GAN-based model.As a result of learning on the network of the proposed model,a clear image with improved contour and distortion of objects in the image was output from about 50,000 iterations.
基金Project(12GJ6055)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2010FJ4107)supported by Hunan Provincial Science and Technology Department,China
文摘The performances of repaired image depend on the local information in the repaired area and the consistency between the repair directions with structural content.Image repair algorithm with texture information performs well in repairing seriously damaged images,but it has bad performances when the images have the abundant structure information.The dual optimization image repair algorithm based on the linear structure and the optimal texture is proposed.The algorithm uses the double-constraint sparse model to reconstruct the missed information in large area in order to improve the clarity of repaired images.After adopting the preference of Criminisi priority,the image repair algorithm of self-similarity characteristics is proposed to improve the fault and fuzzy distortion phenomena in the repaired image.The results show that the proposed algorithm has more clarity in the image texture and structure and better effectiveness,and the peak signal-to-noise ratio of the repaired images by proposed algorithm is superior to that by other algorithms.