A multi-pass caliber rolling has attracted attentions as an alternative to severe plastic deformation processes.The present study enhanced strength and ductility of AZ31 Mg alloy simultaneously through the application...A multi-pass caliber rolling has attracted attentions as an alternative to severe plastic deformation processes.The present study enhanced strength and ductility of AZ31 Mg alloy simultaneously through the application of caliber rolling.The improving trends in tensile properties were interpreted with various caliber-rolling strains.The oval/circular-shaped calibers imposed a high plastic strain at the center of crosssection,leading to effective grain refinement to submicron scale.This work also confirmed the texture randomizing effect of caliber rolling.Such microstructural evolutions gave rise to the fabrication of high-strength material.Moreover,the caliber-rolled AZ31 Mg alloys exhibited an improvement in ductility as compared to the as-received sheet-rolled material.This was discussed in terms of activation of non-basal slip systems and suppression of mechanical twinning.This study successfully proved the possibility of caliber rolling to produce a bulk Mg rod with enhanced tensile properties.展开更多
Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution ...Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution of the Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy was investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Results show that at pass reduction of ε = 5%, 10% and 15% at 350?C respectively, Mg-Nd-Zn typed 24R-LPSO structure was formed in(Ca, Nd)Al2phase(C15 Laves phase). With the increase in pass reduction(i.e. 5%, 10% and 15%), the texture pole density level of basal texture(0002) changed little and pyramidal texture(10 1ˉ3) were increased.In contrast, those of prismatic texture {101ˉ0} 〈11 2ˉ0〉 were increased initially and followed by a reduction, indicating texture randomization in the grain-refined Mg alloy. The combined contribution of LPSO phase and C15 phase was key to randomize the texture of the grain-refined Mg alloy. It was noted that the microcosmic plastic deformation of LPSO phase and nanometer-sized dispersed C15 phase impeded dislocation movement, led to dislocation tangles, and facilitated recrystallization.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2018R1C1B6002068).
文摘A multi-pass caliber rolling has attracted attentions as an alternative to severe plastic deformation processes.The present study enhanced strength and ductility of AZ31 Mg alloy simultaneously through the application of caliber rolling.The improving trends in tensile properties were interpreted with various caliber-rolling strains.The oval/circular-shaped calibers imposed a high plastic strain at the center of crosssection,leading to effective grain refinement to submicron scale.This work also confirmed the texture randomizing effect of caliber rolling.Such microstructural evolutions gave rise to the fabrication of high-strength material.Moreover,the caliber-rolled AZ31 Mg alloys exhibited an improvement in ductility as compared to the as-received sheet-rolled material.This was discussed in terms of activation of non-basal slip systems and suppression of mechanical twinning.This study successfully proved the possibility of caliber rolling to produce a bulk Mg rod with enhanced tensile properties.
基金financial support by the National Natural Science Foundation of China (No. 51364032)
文摘Billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy were produced by spray-deposition(the Osprey process).Effect of rolling deformation(T = 350?C, ε = 5%, 10%, and 15%, respectively) on microstructure and texture evolution of the Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy was investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Results show that at pass reduction of ε = 5%, 10% and 15% at 350?C respectively, Mg-Nd-Zn typed 24R-LPSO structure was formed in(Ca, Nd)Al2phase(C15 Laves phase). With the increase in pass reduction(i.e. 5%, 10% and 15%), the texture pole density level of basal texture(0002) changed little and pyramidal texture(10 1ˉ3) were increased.In contrast, those of prismatic texture {101ˉ0} 〈11 2ˉ0〉 were increased initially and followed by a reduction, indicating texture randomization in the grain-refined Mg alloy. The combined contribution of LPSO phase and C15 phase was key to randomize the texture of the grain-refined Mg alloy. It was noted that the microcosmic plastic deformation of LPSO phase and nanometer-sized dispersed C15 phase impeded dislocation movement, led to dislocation tangles, and facilitated recrystallization.