Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemi...Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.展开更多
To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-tempe...To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-temperature solid-state reaction and the corresponding Ni/ZnO adsorbents were prepared by incipient impregnation method.The analysis results showed that the crystalline sizes of ZnO as-synthesized as well as the BET surface areas varied obviously with the calcination temperature.The activity evaluations indicated that the Ni/ZnO adsorbents prepared with ZnO possessed a favorable textural structure as active component exhibited good activity of removing thiophene.The evolutions of the main crystalline phases of Ni/ZnO adsorbents before and after reaction confirmed that ZnO played a crucial role in taking up S element and converting it into ZnS in the reactive adsorption process.It was concluded that ZnO with larger surface area and smaller crystal particles resulted in better desulfurization activity,which may be the main reason for the different activities of the Ni/ZnO adsorbents prepared with ZnO calcined at different temperatures.展开更多
We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structu...We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.展开更多
基金the National Natural Science Foundation of China(Grant Nos.22275092,52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately.
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
基金supported by National Key Fundamental Research development Plan ("973" Plan, No. 2010CB226905)the Postgraduate Innovation Fund of China University of petroleumthe Postgraduate Innovation Fund of China University of petroleum
文摘To better understand the nature of reactive adsorption of thiophene on Ni/ZnO adsorbent,the effect of ZnO textural structure on the desulfurization activity was investigated.ZnO materials were synthesized by low-temperature solid-state reaction and the corresponding Ni/ZnO adsorbents were prepared by incipient impregnation method.The analysis results showed that the crystalline sizes of ZnO as-synthesized as well as the BET surface areas varied obviously with the calcination temperature.The activity evaluations indicated that the Ni/ZnO adsorbents prepared with ZnO possessed a favorable textural structure as active component exhibited good activity of removing thiophene.The evolutions of the main crystalline phases of Ni/ZnO adsorbents before and after reaction confirmed that ZnO played a crucial role in taking up S element and converting it into ZnS in the reactive adsorption process.It was concluded that ZnO with larger surface area and smaller crystal particles resulted in better desulfurization activity,which may be the main reason for the different activities of the Ni/ZnO adsorbents prepared with ZnO calcined at different temperatures.
基金the National Natural Science Foundation of China(Grant No.60977028)the Key Project Foundation of Shanghai,China(Grant No.09JC1413800)
文摘We present a new and practical approach for preparing submicro-textured silver and aluminum (Ag/Al) double-structured layers at low substrate temperatures. The surface texturing of silver and aluminum double-structured layers was performed by increasing the deposition temperature of the Al layers to 270℃. The highly submicro-textured silver and aluminum double-structured layers were prepared by thermal evaporation on quartz glasses and their surface microstructure, light scattering properties, and thermal stability were investigated. Results showed that the highly submicro-textured Ag/Al composite films prepared at low substrate temperatures used as back reflectors not only can enhance the light scattering and have good thermal stability, but also have good adhesion properties. In addition, their fabrication is low cost and readily carried out.