In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima...In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed.At first,a new Butterworth high pass filter(BHPF) with adaptive cutoff frequency is produced,because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively,and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency.And then,the best decomposition scale is obtained by the level determination function to prevent edge information from missing.At last,edge points are got by double threshold after obtaining the wavelet modulus maxima,and then the edge image is linked by the edge points to ensure the edge continuity and veracity.Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm,and the edge detection algorithm can also detect other defects,and lays the foundation for defecting auto- recognition.展开更多
In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement ...In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.展开更多
The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satell...The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satellite undertakes an important task with its all-day,all-weather observation capability as part of the China High-resolution Earth Observation System(CHEOS).With 12 imaging modes,展开更多
Preferred surface integrity around the hole wall is one of the key parameters to ensure the optimized performance of hole components for nickel-based superalloy.The novel hole cold expansion technique introduced in th...Preferred surface integrity around the hole wall is one of the key parameters to ensure the optimized performance of hole components for nickel-based superalloy.The novel hole cold expansion technique introduced in this work involves the laser texturing process(LTP)followed by the Hertz contact rotary expansion process(HCREP),where the cylindrical sleeve is the critical component connecting the abovementioned two processes.The purpose of LTP is to obtain the most optimized strengthened cylindrical sleeve surface,preparing for the following HCREP.Hereafter,the HCREP acts on the nickel-based hole components by the rotary extruding movements of the strengthened sleeve and conical mandrel tools.As compared to the as-received GH4169 material,the surface integrity characterization for the strengthened hole shows that a plastic deformation layer with finer grains,higher micro-hardness,deeper compressive residual stress(CRS)distribution and lower surface roughness is formed at the hole wall.In addition,transmission electron microscope(TEM)observations reveal the microstructure evolution mechanism in the strengthened hole.Grain refinement near the hole wall is regarded as the fundamental reason for improving the surface integrity,where the aggregated dislocations and recombined dislocation walls can be clearly observed.展开更多
Texture inhomogeneity usually takes place in ferritic stainless steels due to the lack of phase transformation and recrystallization during hot strip rolling,which can deteriorate the formability of final sheets.In or...Texture inhomogeneity usually takes place in ferritic stainless steels due to the lack of phase transformation and recrystallization during hot strip rolling,which can deteriorate the formability of final sheets.In order to work out the way of weakening texture inhomogeneity,conventional hot rolling and warm rolling processes have been carried out with an ultra purified ferritic stainless steel.The results showed that the evolution of through-thickness texture is closely dependent on rolling process,especially for the texture in the center layer.For both conventional and warm rolling processes,shear texture components were formed in the surface layers after hot rolling and annealing;sharp α-fiber and weakγ-fiber with the major component at{111}〈110〉 were developed in both cold rolled sheet surfaces,leading to the formation of inhomogeneousγ-fiber dominated by{111}〈112〉after recrystallization annealing.In the center layer of conventional rolled and annealed bands,strongα-fiber and weakγ-fiber textures were formed;the cold rolled textures were comprised of sharpα-fiber and weakγ-fiber with the major component at{111}〈110〉,and inhomogeneousγ-fiber dominated by{111}〈112〉 was formed after recrystallization annealing.By contrast,in the centre layer of warm rolled bands,the texture was comprised of weakα-fiber and sharpγ-fiber,andγ-fiber became the only component after annealing.The cold rolled texture displayed a sharpγ-fiber with the major component at{111}〈112〉and the intensity ofγ-fiber close to that ofα-fiber,resulting in the formation of a nearly homogeneousγ-fiber recrystallization texture in the center layer of the final sheet.展开更多
A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2...A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.展开更多
In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The sys...In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device(CCD) camera, a gold sensor chip, a polydimethylsiloxane(PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index(RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) are studied independently. The binding of EGF receptor(EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.展开更多
Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.T...Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.展开更多
基金Supported by the National Natural Science Foundation of China(No.51205265)
文摘In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background,an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed.At first,a new Butterworth high pass filter(BHPF) with adaptive cutoff frequency is produced,because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively,and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency.And then,the best decomposition scale is obtained by the level determination function to prevent edge information from missing.At last,edge points are got by double threshold after obtaining the wavelet modulus maxima,and then the edge image is linked by the edge points to ensure the edge continuity and veracity.Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm,and the edge detection algorithm can also detect other defects,and lays the foundation for defecting auto- recognition.
文摘In the present study,AZ31 magnesium alloy sheets were processed by friction stir processing(FSP)to investigate the effect of the grain refinement and grain size distribution on the corrosion behavior.Grain refinement from a starting size of 16.4±6.8µm to 3.2±1.2µm was attained after FSP.Remarkably,bimodal grain size distribution was observed in the nugget zone with a combination of coarse(11.62±8.4µm)and fine grains(3.2±1.2µm).Due to the grain refinement,a slight improvement in the hardness was found in the nugget zone of FSPed AZ31.The bimodal grain size distribution in the stir zone showed pronounced influence on the corrosion rate of FSPed AZ31 as observed from the immersion and electrochemical tests.From the X-ray diffraction analysis,more amount of Mg(OH)_(2) was observed on FSPed AZ31 compared with the unprocessed AZ31.Polarization measurements demonstrated the higher corrosion current density for FSPed AZ31(8.92×10^(−5)A/cm^(2))compared with the unprocessed condition(2.90×10^(−5)A/cm^(2))that can be attributed to the texture effect and large variations in the grain size which led to non-uniform galvanic intensities.
文摘The first images obtained from Gaofen-3(GF-3),China’s first C-band high-resolution Synthetic Aperture Radar(SAR)satellite with a resolution of one meter in spatial diameter were published on August 25.This satellite undertakes an important task with its all-day,all-weather observation capability as part of the China High-resolution Earth Observation System(CHEOS).With 12 imaging modes,
基金sponsored by the National Key Research and Development Program of China(2018YFC1902404)the National Natural Science Foundation of China(51725503,51705155)Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-02-E00068)。
文摘Preferred surface integrity around the hole wall is one of the key parameters to ensure the optimized performance of hole components for nickel-based superalloy.The novel hole cold expansion technique introduced in this work involves the laser texturing process(LTP)followed by the Hertz contact rotary expansion process(HCREP),where the cylindrical sleeve is the critical component connecting the abovementioned two processes.The purpose of LTP is to obtain the most optimized strengthened cylindrical sleeve surface,preparing for the following HCREP.Hereafter,the HCREP acts on the nickel-based hole components by the rotary extruding movements of the strengthened sleeve and conical mandrel tools.As compared to the as-received GH4169 material,the surface integrity characterization for the strengthened hole shows that a plastic deformation layer with finer grains,higher micro-hardness,deeper compressive residual stress(CRS)distribution and lower surface roughness is formed at the hole wall.In addition,transmission electron microscope(TEM)observations reveal the microstructure evolution mechanism in the strengthened hole.Grain refinement near the hole wall is regarded as the fundamental reason for improving the surface integrity,where the aggregated dislocations and recombined dislocation walls can be clearly observed.
基金Sponsored by National Natural Science Foundation of China(51271050,51004035)National Science and Technology PillarProgram During 12th Five-Year Plan of China(2012BAE04B02)Fundamental Research Funds for Central Universities ofChina(N100507002)
文摘Texture inhomogeneity usually takes place in ferritic stainless steels due to the lack of phase transformation and recrystallization during hot strip rolling,which can deteriorate the formability of final sheets.In order to work out the way of weakening texture inhomogeneity,conventional hot rolling and warm rolling processes have been carried out with an ultra purified ferritic stainless steel.The results showed that the evolution of through-thickness texture is closely dependent on rolling process,especially for the texture in the center layer.For both conventional and warm rolling processes,shear texture components were formed in the surface layers after hot rolling and annealing;sharp α-fiber and weakγ-fiber with the major component at{111}〈110〉 were developed in both cold rolled sheet surfaces,leading to the formation of inhomogeneousγ-fiber dominated by{111}〈112〉after recrystallization annealing.In the center layer of conventional rolled and annealed bands,strongα-fiber and weakγ-fiber textures were formed;the cold rolled textures were comprised of sharpα-fiber and weakγ-fiber with the major component at{111}〈110〉,and inhomogeneousγ-fiber dominated by{111}〈112〉 was formed after recrystallization annealing.By contrast,in the centre layer of warm rolled bands,the texture was comprised of weakα-fiber and sharpγ-fiber,andγ-fiber became the only component after annealing.The cold rolled texture displayed a sharpγ-fiber with the major component at{111}〈112〉and the intensity ofγ-fiber close to that ofα-fiber,resulting in the formation of a nearly homogeneousγ-fiber recrystallization texture in the center layer of the final sheet.
基金the National Institute of Nuclear Research(ININ),México,for financial support through project CB-406 stagesⅠ-Ⅲ
文摘A series of MgO-based adsorbents were prepared through solution–combustion synthesis and ball-milling process.The prepared MgO-based powders were characterized using X-ray diffraction,scanning electron microscopy,N_2 physisorption measurements,and employed as potential adsorbents for CO_2 adsorption.The influence of structural and textural properties of these adsorbents over the CO_2 adsorption behaviour was also investigated.The results showed that MgO-based products prepared by solution–combustion and ball-milling processes,were highly porous,fluffy,nanocrystalline structures in nature,which are unique physico-chemical properties that significantly contribute to enhance their CO_2 adsorption.It was found that the MgO synthesized by solution combustion process,using a molar ratio of urea to magnesium nitrate(2:1),and treated by ball-milling during 2.5 hr(MgO-BM2.5h),exhibited the maximum CO_2 adsorption capacity of 1.611 mmol/g at 25℃ and 1 atm,mainly via chemisorption.The CO_2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area,total pore volume,pore size distribution and crystallinity.The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO_2adsorption–desorption times,without any significant loss of performance,that supports the potential of MgO-based adsorbent.The results confirmed that the special features of MgO prepared by solution–combustion and treated by ball-milling during 2.5 hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO_2 capture technologies.
基金supported by the National Basic Research Program of China(Nos.2011CB933202 and 2014CB744600)the National High Technology Research and Development Program of China(No.2014AA022303)the National Natural Science Foundation of China(Nos.61201079,61372055,81371711 and 31100820)
文摘In this paper, a surface plasmon resonance imaging(SPRI) system for cell analysis is developed for obtaining the surface plasmon resonance(SPR) signal from the interactions between cells and different stimuli. The system is constructed with a red laser light source, a P-polarizer, a glass prism, a 5× objective lens, a charge coupled device(CCD) camera, a gold sensor chip, a polydimethylsiloxane(PDMS) reaction well and a mechanical scanning device. The system is applied to mapping living cells in response to stimuli by characterization of the refractive index(RI) changes. Cell responses to K+ in KCl solutions with concentrations of 5 mmol/L, 20 mmol/L, 50 mmol/L and 100 mmol/L are collected, which indicates that the SPRI method can distinguish the concentration of the stimuli. Furthermore, cell responses to epidermal growth factor(EGF) and vascular endothelial growth factor(VEGF) are studied independently. The binding of EGF receptor(EGFR) and EGF is collected as the first signal, and the internal change in cells is recorded as the second signal. The cell response to VEGF is different from that to EGF, which indicates that the SPRI as a label-free, real-time, fast and quantitative method has a potential to distinguish the cell responses to different stimuli.
基金supported by the National Natural Science Foundation of China(No.61170106)
文摘Because texture images cannot be directly processed by the gray level information of individual pixel,we propose a new texture descriptor which reflects the intensity distribution of the patch centered at each pixel.Then the general multiphase image segmentation model of Potts model is extended for texture segmentation by adding the region information of the texture descriptor.A fast numerical scheme based on the split Bregman method is designed to speed up the computational process.The algorithm is efficient,and both the texture descriptor and the characteristic functions can be implemented easily.Experiments using synthetic texture images,real natural scene images and synthetic aperture radar images are presented to give qualitative comparisons between our method and other state-of-the-art techniques.The results show that our method can accurately segment object regions and is competitive compared with other methods especially in segmenting natural images.