In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in thi...In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.展开更多
Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoerciviti...Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.展开更多
The microstructure and misorientation of ultrathin hot strip were analyzed by CSP technology using electron back scattered diffraction (EBSD) method and Autoforge finite element program. The experimental results showe...The microstructure and misorientation of ultrathin hot strip were analyzed by CSP technology using electron back scattered diffraction (EBSD) method and Autoforge finite element program. The experimental results showed that the finishing hot rolling microstructures were the mixture of recrystallized and deformed austenite. After phase transformation, ferrite grains embody substructures and dislocations, leading to the high strength and relatively low elongation rate of the ultrathin hot strip. The FEM simulation of strain mode and distribution in deformation area has been fulfilled. The simulation results are in good agreement with the theoretical analysis and experimental results.展开更多
Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current...Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.展开更多
基金sponsored by National Key R&D Program of China(2018YFC1504504)Youth Foundation of Yunnan Earthquake Agency(2021K01)Project of Yunnan Earthquake Agency“Chuan bang dai”(CQ3-2021001).
文摘In order to improve the accuracy of building structure identification using remote sensing images,a building structure classification method based on multi-feature fusion of UAV remote sensing image is proposed in this paper.Three identification approaches of remote sensing images are integrated in this method:object-oriented,texture feature,and digital elevation based on DSM and DEM.So RGB threshold classification method is used to classify the identification results.The accuracy of building structure classification based on each feature and the multi-feature fusion are compared and analyzed.The results show that the building structure classification method is feasible and can accurately identify the structures in large-area remote sensing images.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171001,51371009 and 50971003the Foundation of Key Laboratory of Neutron Physics of CAEP under Grant No 2014BB02
文摘Textured Bi and MnBi/Bi thin films are prepared by the pulsed laser deposition method. The highly c-axis textured MnBi films are obtained by annealing the bilayer consisting of textured Bi and Mn films. The eoercivities of the MnBi/Bi film are 1.5 T and 2.35 T at room temperature and at 373K, respectively, showing a positive temperature coefficient. Microstructural investigations show that the textured MnBi film results from the orientated growth induced by the textured Bi under-layer.
基金This research is supported by the State Foundation for Key Projects, Fundamental Research on New Generation of Steels (No.G1998061500)
文摘The microstructure and misorientation of ultrathin hot strip were analyzed by CSP technology using electron back scattered diffraction (EBSD) method and Autoforge finite element program. The experimental results showed that the finishing hot rolling microstructures were the mixture of recrystallized and deformed austenite. After phase transformation, ferrite grains embody substructures and dislocations, leading to the high strength and relatively low elongation rate of the ultrathin hot strip. The FEM simulation of strain mode and distribution in deformation area has been fulfilled. The simulation results are in good agreement with the theoretical analysis and experimental results.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205313,50975232)Fundamental Research Funds for the Central Universities of China(Grant No.3102014JCS05009)the 111 Project of China(Grant No.B13044)
文摘Detailed behaviors of nanoscale textured surfaces during the reciprocating sliding contacts are still unknown although they are widely used in mechanical components to improve tribological characteristics. The current research of sliding contacts of textured surfaces mainly focuses on the experimental studies, while the cost is too high. Molecular dynamics(MD) simulation is widely used in the studies of nanoscale single-pass sliding contacts, but the CPU cost of MD simulation is also too high to simulate the reciprocating sliding contacts. In this paper, employing multiscale method which couples molecular dynamics simulation and finite element method, two dimensional nanoscale reciprocating sliding contacts of textured surfaces are investigated. Four textured surfaces with different texture shapes are designed, and a rigid cylindrical tip is used to slide on these textured surfaces. For different textured surfaces, average potential energies and average friction forces of the corresponding sliding processes are analyzed. The analyzing results show that "running-in" stages are different for each texture, and steady friction processes are discovered for textured surfaces II, III and IV. Texture shape and sliding direction play important roles in reciprocating sliding contacts, which influence average friction forces greatly. This research can help to design textured surfaces to improve tribological behaviors in nanoscale reciprocating sliding contacts.