Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4...The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.展开更多
Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of thi...Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in th...The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.展开更多
This paper deals with thallium in typical low-temperature deopits of Au, Tl, As,Sb and Hg in South China with respect to its mode of occurrence, minerals and geochemicalcorrelations with many other coexisting major an...This paper deals with thallium in typical low-temperature deopits of Au, Tl, As,Sb and Hg in South China with respect to its mode of occurrence, minerals and geochemicalcorrelations with many other coexisting major and trace elements. Criteria are proposed for i-dentifying independent thallium deposits and thallium-bearing deposits and the Nanhua realgardeposit is classified for the first time as an independent thallium deposit. Tl, F, Cl, I and B aresuggested as indicators for low-temperature mineralization with examples furnished for their ap-plications.展开更多
The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore bl...The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore blocks, including the Beiwu, Nilv, Jiangbian, Linong, Lunong, Tongjige and Jiaren. The Cu metal prospective reserves of the Yangla deposit are above 1 million tons. There are widely distributed Indosinian granodiorite and also many gabbro-diabase dikes and few quartz porphyries exposed in the Yangla ore district. The ore-hosting rocks are diopsode-garnet skarn, sericitie sandy slate and metamorphic quartz sandstone of the first member of the Devonian Linong Formation. Ore bodies occur as layered, stratoid, lenticular and veined shapes, and are strictly controlled by rocks, strata and structures.展开更多
The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted hi...The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted high-precision ground magnetic measurements to delineate fault structures and favorable prospecting targets,utilized induced polarization(IP)intermediate gradient to roughly determine the distribution and extension of the tectonic altered zone and gold ore(mineralized)bodies,and further carried out IP sounding and magnetotelluric sounding to locate the tectonic altered zone and gold ore(mineralized)bodies.The anomalous gradient belt of the combination of positive and negative micromagnetic measurements reflects the detail of shallow surface tectonic alteration zone and gold mineralization body.Micromagnetic profile anomalies indicate the spatial location and occurrence of concealed tectonic alteration zone and gold(mineralized)ore bodies.Soil geochemical measurements indicate that the ore-forming element Au correlates well with As and Sb,and As and Sb anomalies have a good indication to gold orebodies.Based on the multi-source geological-geophysical-geochemical information of the Nyasirori gold deposit,this work established an integrated prospecting model and proposed a set of geophysical and geochemical methods for optimizing prospecting targets.展开更多
A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,...A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.展开更多
The Katelixi Cu-Zn deposit is a marine volcanic rock-type copper deposit discovered for the first time in the Tokuzidaban Group in eastern Kunlun Mountains area. It is hosted in the Lower Carboniferous Tokuzidaban Gro...The Katelixi Cu-Zn deposit is a marine volcanic rock-type copper deposit discovered for the first time in the Tokuzidaban Group in eastern Kunlun Mountains area. It is hosted in the Lower Carboniferous Tokuzidaban Group volcanic strata. The orebodies are obviously controlled by the strata and their ore-bearing rocks are a suite of greyish-green mafic tuffs, generally parallel-stratiform, stratoid and lenticular in form, occurring in limestone as well as in the contact between limestone and carbon-bearing siltstone. This ore deposit possesses distinct characteristics of marine volcanic rock sedimentaion. The geological, petrochemical and REE characteristics of its occurrence pro-vide strong evidence suggesting that this deposit is of marine volcanic rock sedimention origin, basically identical to those of some typical marine volcanic rock-type copper deposits in Xinjiang and other parts of China. Marine vol-canic rocks are well developed in the Lower Carboniferous Tokuzidaban strata in eastern Kunlun Mountains area. In addition to this deposit, we have also found a number of copper polymetallic ore deposits or occurrences in associa-tion with marine volcanc activities in many places where there is a good metallogenic prospect. A breakthrough in the understanding of ore prospecting and genesis has not only filled up the gap in prospecting this type of ore depos-its in this area, but also is of great significance in directing exploration of this type of ore deposits in this area.展开更多
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the worl...The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.展开更多
The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was s...The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.展开更多
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve...The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.展开更多
China's realgar/orpiment deposits may be classified into three types, the stratabound, hot-water sedimentary and hydrothermal, according to their mineralizing processes, geological occurrences, tectonic and geoche...China's realgar/orpiment deposits may be classified into three types, the stratabound, hot-water sedimentary and hydrothermal, according to their mineralizing processes, geological occurrences, tectonic and geochemical features. The three types may be further distinguished into seven subtypes, namely, the Xiaguan, Shuiluo, Jiepaiyu, Songpan, Shixia, Wangzhuang and Ninghshan ones. On this basis three minerogenic models are established, and based on studies of their geochemistry and minerogenic mechanisms the prerequisites for prospecting for these types of deposits are given in the paper.展开更多
Large trihydroxy bauxite deposit was once considered unavailable in China.With the prospecting think-ing of diwa theory,the author has drawn a contrary conclusion.From the view of the law of progression with transform...Large trihydroxy bauxite deposit was once considered unavailable in China.With the prospecting think-ing of diwa theory,the author has drawn a contrary conclusion.From the view of the law of progression with transformation between mobile and stable regions and the metallogenic specialization of tectonic elements,he reveals the principal reason why the known bauxite deposits in China are mostly of monohydroxide type,and acquires the way of searching for trihydroxide bauxite deposits.He considers that the residual-mobility period of the diwa stage in the crustal development in South China pocesses-tectonic conditions favourable to the formation of bauxite deposits of this type.He believes that the Cenozoic structural sublayer of the residual-mobility period of the diwa stage developed on the carbonate rock of the Paleozoic platformal structural layer is the preferrential target of prospecting.With this thinking and many years of efforts,we have gained prelimi-nary achievements and have discovered Guigang-type latee-ritic trihydroxied bauxite deposits in Guangxi.In future,by extension and analogy of the thinking,we are likely to find large,high-grade bauxite deposits in its vicinity and to discover weathering-type bauxite deposits with other parent rocks.展开更多
The paper focuses on the geological setting, forrning environment, petrochemistry, isotope, etc. of the Yangshanian intermediate-acid porphyry intrusion in ZhashuiShanyang mineralization belt. The alteration type and ...The paper focuses on the geological setting, forrning environment, petrochemistry, isotope, etc. of the Yangshanian intermediate-acid porphyry intrusion in ZhashuiShanyang mineralization belt. The alteration type and zone of the intrusion and its host rocks have been studied, and the characteristics of the known copper (-molybdenum-gold) mineralization occurrence have been investigated. Hence the metallogenetic factors and ore prospectivity have been evaluated by comprehensive study of the metallogenic geology and correlation with the rnega-porphyry copper(-molybdenum) deposits in the world.展开更多
Arsenopyrite is one of very important and common auriferous minerals in endogenetic gold deposits. In seven gold deposits, the prospecting typomorphic characteristics of arsenopyrite, such as morphological typomorphis...Arsenopyrite is one of very important and common auriferous minerals in endogenetic gold deposits. In seven gold deposits, the prospecting typomorphic characteristics of arsenopyrite, such as morphological typomorphism, composition typomorphism, pyroelectricity typomorphism and so on, were established. The crystal form of arsenopyrite is simple, and the form symbols mainly are {101}, {120}, {210}, {140}, {230}, {012}, etc. The smaller grain and poor crystal form arsenopyrite indicates the better auriferous characteristics. The major elements (Fe, As and S) of gold-bearing arsenopyrite usually show Fe/As+S>0.5,As/S<1 which deviates from its theoretical value. The most important trace element is Au and next is Ag in arsenopyrite, and they often show the positive correlation. The pyroelectricity of arsenopyrite can reflect the mineralization epoch, and it also is related to the crystal form and granudarity.展开更多
Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological resea...Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological research and mineral exploration(Li Bile et al., 2015). The Qimantag Mountain is located in middle segment of the EKO, which has experienced the Early Paleozoic and Late Paleozoic–Early展开更多
The Pulang porphyry copper deposit,located in the Gezan tectonic-magmatic arc and south of the Yidun island arc,southwest of Sanjiang metallogenic belt in Yunnan province,is a super-large porphyry copper deposit.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
基金funded by projects of the China Geological Survey(Nos.DD20242070,DD20230763,DD20221695,DD20190379,and DD20160346)。
文摘The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit.
基金the Geological Science and technology foundation of Shandong Provincial Bureau of Geology and Mineral Resources (Grant No. 20080037)
文摘Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
基金funded by the project titled Prospect Survey and Exploration Demonstration of Hardrock Mineral Resources such as Uranium and Thorium(12120115014101)initiated by the Tianjin Center of China Geological Survey.The data and achievements cited in this paper are mainly from relevant scientific research,geological survey,and mineral exploration projects undertaken by the No.302 Brigade of Hunan Nuclear Industry Geology Bureau in recent years.
文摘The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.
文摘This paper deals with thallium in typical low-temperature deopits of Au, Tl, As,Sb and Hg in South China with respect to its mode of occurrence, minerals and geochemicalcorrelations with many other coexisting major and trace elements. Criteria are proposed for i-dentifying independent thallium deposits and thallium-bearing deposits and the Nanhua realgardeposit is classified for the first time as an independent thallium deposit. Tl, F, Cl, I and B aresuggested as indicators for low-temperature mineralization with examples furnished for their ap-plications.
文摘The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore blocks, including the Beiwu, Nilv, Jiangbian, Linong, Lunong, Tongjige and Jiaren. The Cu metal prospective reserves of the Yangla deposit are above 1 million tons. There are widely distributed Indosinian granodiorite and also many gabbro-diabase dikes and few quartz porphyries exposed in the Yangla ore district. The ore-hosting rocks are diopsode-garnet skarn, sericitie sandy slate and metamorphic quartz sandstone of the first member of the Devonian Linong Formation. Ore bodies occur as layered, stratoid, lenticular and veined shapes, and are strictly controlled by rocks, strata and structures.
基金This work is financially supported by the Special Fund for Foreign Mineral Resources Risk Exploration(201210B01600234).
文摘The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted high-precision ground magnetic measurements to delineate fault structures and favorable prospecting targets,utilized induced polarization(IP)intermediate gradient to roughly determine the distribution and extension of the tectonic altered zone and gold ore(mineralized)bodies,and further carried out IP sounding and magnetotelluric sounding to locate the tectonic altered zone and gold ore(mineralized)bodies.The anomalous gradient belt of the combination of positive and negative micromagnetic measurements reflects the detail of shallow surface tectonic alteration zone and gold mineralization body.Micromagnetic profile anomalies indicate the spatial location and occurrence of concealed tectonic alteration zone and gold(mineralized)ore bodies.Soil geochemical measurements indicate that the ore-forming element Au correlates well with As and Sb,and As and Sb anomalies have a good indication to gold orebodies.Based on the multi-source geological-geophysical-geochemical information of the Nyasirori gold deposit,this work established an integrated prospecting model and proposed a set of geophysical and geochemical methods for optimizing prospecting targets.
基金funded by a pilot project entitled“Deep Geological Survey of Benxi-Linjiang Area”(1212011220247)of the 3D Geological Mapping and Deep Geological Survey of China Geological Survey。
文摘A method is proposed for the prospecting prediction of subsurface mineral deposits based on soil geochemistry data and a deep convolutional neural network model.This method uses three techniques(window offset,scaling,and rotation)to enhance the number of training data for the model.A window area is used to extract the spatial distribution characteristics of soil geochemistry and measure their correspondence with the occurrence of known subsurface deposits.Prospecting prediction is achieved by matching the characteristics of the window area of an unknown area with the relationships established in the known area.This method can efficiently predict mineral prospective areas where there are few ore deposits used for generating the training dataset,meaning that the deep-learning method can be effectively used for deposit prospecting prediction.Using soil active geochemical measurement data,this method was applied in the Daqiao area,Gansu Province,for which seven favorable gold prospecting target areas were predicted.The Daqiao orogenic gold deposit of latest Jurassic and Early Jurassic age in the southern domain has more than 105 t of gold resources at an average grade of 3-4 g/t.In 2020,the project team drilled and verified the K prediction area,and found 66 m gold mineralized bodies.The new method should be applicable to prospecting prediction using conventional geochemical data in other areas.
基金supported finantially by the National "12 nd Five-Year Plan" Supporting Grogram (No.2011BAB06B05)the Key Orientation Project under the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-107-03)
文摘The Katelixi Cu-Zn deposit is a marine volcanic rock-type copper deposit discovered for the first time in the Tokuzidaban Group in eastern Kunlun Mountains area. It is hosted in the Lower Carboniferous Tokuzidaban Group volcanic strata. The orebodies are obviously controlled by the strata and their ore-bearing rocks are a suite of greyish-green mafic tuffs, generally parallel-stratiform, stratoid and lenticular in form, occurring in limestone as well as in the contact between limestone and carbon-bearing siltstone. This ore deposit possesses distinct characteristics of marine volcanic rock sedimentaion. The geological, petrochemical and REE characteristics of its occurrence pro-vide strong evidence suggesting that this deposit is of marine volcanic rock sedimention origin, basically identical to those of some typical marine volcanic rock-type copper deposits in Xinjiang and other parts of China. Marine vol-canic rocks are well developed in the Lower Carboniferous Tokuzidaban strata in eastern Kunlun Mountains area. In addition to this deposit, we have also found a number of copper polymetallic ore deposits or occurrences in associa-tion with marine volcanc activities in many places where there is a good metallogenic prospect. A breakthrough in the understanding of ore prospecting and genesis has not only filled up the gap in prospecting this type of ore depos-its in this area, but also is of great significance in directing exploration of this type of ore deposits in this area.
基金funded by the National Scientific and Technological Basic Resources Investigation Program(2022FY101800)a project of the National Natural Science Foundation of China(42102087)+1 种基金a project of the China Postdoctoral Science Foundation(2022M712966)a major project of the Ministry of Science and Technology of the People’s Republic of China(2021QZKK0304)。
文摘The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit)ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world.It has proven resources of copper(Cu),molybdenum(Mo),gold(Au),and silver(Ag)of 2.28×10^(6)t,80×10^(3)t,73 t,and 1046 t,respectively.The major characteristics of the Duobaoshan porphyry Cu deposit are as follows.It is located in a zone sandwiched by the Siberian,North China,and paleo-Pacific plates in an island arc tectonic setting and was formed by the Paleozoic mineralization and the Mesozoic mineralization induced by superposition and transformation.The metallogenic porphyries are the Middle Hercynian granodiorite porphyries.The alterations of surrounding rocks are distributed in a ring form.With silicified porphyries at the center,the alteration zones of K-feldspar,biotite,sericite,and propylite occur from inside to outside.This deposit is composed of 215 ore bodies(including 14 major ore bodies)in four mineralized zones.Ore body No.X in the No.3 mineralized zone has the largest resource reserves,accounting for more than 78%of the total reserves of the deposit.Major ore components include Cu,Mo,Au,Ag,Se,and Ga,which have an average content of 0.46%,0.015%,0.16 g/t,1.22 g/t,0.0003%,and 0.001%-0.003%,respectively.The ore minerals of this deposit primarily include pyrite,chalcopyrite,bornite,and molybdenite,followed by magnetite,hematite,rutile,gelenite,and sphalerite.The ore-forming fluids of this deposit were magmatic water in the early metallogenic stage and then the mixture of meteoric water and magmatic water at the late metallogenic stage.The ore-forming fluids experienced three stages.The ore-forming fluids of stageⅠhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 375-650℃,and ore-forming pressure of 110-160 MPa.The ore-forming fluids of stageⅡhad a hydrochemical type of H_(2)O-CO_(2)-Na Cl,an ore-forming temperature of 310-350℃,and ore-forming pressure of 58-80 MPa.The ore-forming fluids of stageⅢhad a hydrochemical type of Na Cl-H_(2)O,an ore-forming temperature of 210-290℃,and ore-forming pressure of 5-12 MPa.The CuAu-Mo-Ag mineralization mainly occurred at stagesⅠandⅡ,with the ore-forming materials having a mixed crust-mantle source.The Duobaoshan porphyry Cu deposit was formed in the initial subduction environment of the Paleo-Asian Ocean Plate during the Early Ordovician.Then,due to the closure of the Mongol-Okhotsk Ocean and the subduction and compression of the Paleo-Pacific Ocean,a composite orogenic metallogenic model of the deposit was formed.In other words,it is a porphyry-epithermal copper-gold polymetallic mineralization system of composite orogeny consisting of Paleozoic island arcs and Mesozoic orogeny and extension.
文摘The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.
基金supported by the National Key Research and Development Program of China(2018YFC0604102)the project of China Geological Survey(DD20190015)。
文摘The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas.
文摘China's realgar/orpiment deposits may be classified into three types, the stratabound, hot-water sedimentary and hydrothermal, according to their mineralizing processes, geological occurrences, tectonic and geochemical features. The three types may be further distinguished into seven subtypes, namely, the Xiaguan, Shuiluo, Jiepaiyu, Songpan, Shixia, Wangzhuang and Ninghshan ones. On this basis three minerogenic models are established, and based on studies of their geochemistry and minerogenic mechanisms the prerequisites for prospecting for these types of deposits are given in the paper.
文摘Large trihydroxy bauxite deposit was once considered unavailable in China.With the prospecting think-ing of diwa theory,the author has drawn a contrary conclusion.From the view of the law of progression with transformation between mobile and stable regions and the metallogenic specialization of tectonic elements,he reveals the principal reason why the known bauxite deposits in China are mostly of monohydroxide type,and acquires the way of searching for trihydroxide bauxite deposits.He considers that the residual-mobility period of the diwa stage in the crustal development in South China pocesses-tectonic conditions favourable to the formation of bauxite deposits of this type.He believes that the Cenozoic structural sublayer of the residual-mobility period of the diwa stage developed on the carbonate rock of the Paleozoic platformal structural layer is the preferrential target of prospecting.With this thinking and many years of efforts,we have gained prelimi-nary achievements and have discovered Guigang-type latee-ritic trihydroxied bauxite deposits in Guangxi.In future,by extension and analogy of the thinking,we are likely to find large,high-grade bauxite deposits in its vicinity and to discover weathering-type bauxite deposits with other parent rocks.
文摘The paper focuses on the geological setting, forrning environment, petrochemistry, isotope, etc. of the Yangshanian intermediate-acid porphyry intrusion in ZhashuiShanyang mineralization belt. The alteration type and zone of the intrusion and its host rocks have been studied, and the characteristics of the known copper (-molybdenum-gold) mineralization occurrence have been investigated. Hence the metallogenetic factors and ore prospectivity have been evaluated by comprehensive study of the metallogenic geology and correlation with the rnega-porphyry copper(-molybdenum) deposits in the world.
文摘Arsenopyrite is one of very important and common auriferous minerals in endogenetic gold deposits. In seven gold deposits, the prospecting typomorphic characteristics of arsenopyrite, such as morphological typomorphism, composition typomorphism, pyroelectricity typomorphism and so on, were established. The crystal form of arsenopyrite is simple, and the form symbols mainly are {101}, {120}, {210}, {140}, {230}, {012}, etc. The smaller grain and poor crystal form arsenopyrite indicates the better auriferous characteristics. The major elements (Fe, As and S) of gold-bearing arsenopyrite usually show Fe/As+S>0.5,As/S<1 which deviates from its theoretical value. The most important trace element is Au and next is Ag in arsenopyrite, and they often show the positive correlation. The pyroelectricity of arsenopyrite can reflect the mineralization epoch, and it also is related to the crystal form and granudarity.
基金financially supported by the Yunnan Copper (Group) Co., LTD (grant No.20150104)
文摘Object The Eastern Kunlun Orogen(EKO), An important part of the Tethyan orogenic belt in the northern margin of the Qinghai–Tibet Plateau(Li et al., 2014; Ren Haidong et al., 2016), is a key area for geological research and mineral exploration(Li Bile et al., 2015). The Qimantag Mountain is located in middle segment of the EKO, which has experienced the Early Paleozoic and Late Paleozoic–Early
基金granted by China State Mineral Resources Investigation Program (Grant No.12120114013701 and 1212011120608)
文摘The Pulang porphyry copper deposit,located in the Gezan tectonic-magmatic arc and south of the Yidun island arc,southwest of Sanjiang metallogenic belt in Yunnan province,is a super-large porphyry copper deposit.