The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
Ti6Al4V cellular structures were produced by selective laser melting(SLM)and then filled either with beta-tricalcium phosphate(β-TCP)or PEEK(poly-ether-ether-ketone)through powder metallurgy techniques,to improve ost...Ti6Al4V cellular structures were produced by selective laser melting(SLM)and then filled either with beta-tricalcium phosphate(β-TCP)or PEEK(poly-ether-ether-ketone)through powder metallurgy techniques,to improve osteoconductivity and wear resistance.The corrosion behavior of these structures was explored considering its importance for the long-term performance of implants.Results revealed that the incorporation of open cellular pores induced higher electrochemical kinetics when being compared with dense structures.The impregnation ofβ-TCP and PEEK led to the creation of voids or gaps between the metallic matrix and the impregnated material which also influenced the corrosion behavior of the cellular structures.展开更多
To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorpor...To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles.The Si@Co±NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell,and there is void space between the core and the shell.When using as anode material for LIBs,Si@Co±NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g^(-1)and a coulombic efficiency of 100.1%at 1000 mA g^(-1)after 3000 cycles,and the capacity loss rate is 0.022%per cycle only.The excellent electrochemical property of Si@Co±NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles,and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell.Also,the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix.This work shows that,through designing a superstructure for the anode materials,we can synergistically reduce the work function and introduce the confinement effect,thus significantly enhancing the anode materials’electrochemical performance in LIBs.展开更多
Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on th...Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on the densification, microstructure, and microhardness and corrosion behaviour of Ti-6 Al-4 V was investigated.An increase in microhardness value was recorded from 325.46 HV_(0.1) to 585.73 HV_(0.1). X-ray diffraction(XRD) analysis showed that the intensity of diffraction peaks of Si3 N4 phase in the composites increased.The sintered Ti-6 Al-4 V reinforced with Si_3 N_4 compacts revealed the non-existence of intermediate phases, such as TiSi_2(titanium silicide) which was expected. SEM analysis of the spark plasma sintered composites revealed a and β phase microstructures in Ti-6 Al-4 V with uniform distribution of Si3 N4 particulates in the matrix. The corrosion resistance property of the material was improved by the addition of Si_3 N_4 from 0.986629 mm/year to 0.030547 mm/year.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a ...Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.展开更多
The Panzhihua intrusion in southwest China is part of the Emeishan large igneous province and host of a large Fe-Ti-V ore deposit.In previous interpretations it was considered to be a layered,differentiated sill with ...The Panzhihua intrusion in southwest China is part of the Emeishan large igneous province and host of a large Fe-Ti-V ore deposit.In previous interpretations it was considered to be a layered,differentiated sill with the ore deposits at its base.New structural and petrological data suggest instead that the intrusion has an open S-shape,with two near-concordant segments joined by a discordant dyke-like segment. During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.In the central segment,magmatic layering is oriented oblique to the walls of the intrusion.This layering cannot have formed by crystal settling or in-situ growth on the floor of the intrusion;instead we propose that it resulted from inward solidification of multiple,individually operating,convection cells.Ore formation was triggered by interaction of magma with carbonate wall rocks.展开更多
The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. ...The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1-xGe, NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1-x Gex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1-xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes.展开更多
The microstructural evolution and apparent viscosity of hypereutectic Al-24%Si alloy during semi-solid state shearing were studied with a Searte type viscometer. When the alloy melt was continuously stirred from 720 d...The microstructural evolution and apparent viscosity of hypereutectic Al-24%Si alloy during semi-solid state shearing were studied with a Searte type viscometer. When the alloy melt was continuously stirred from 720 degreesC to eutectic temperature, the primary Si crystals were gradually changed from elongated platelets to near-spherical shapes. It was found that some nondendritic a-phase formed when the melt was stirred below 585 degreesC. The experiment showed that the semi-solid stirring had strong effect on inhibiting the anisotropic growth of Si crystals during solidification. The apparent viscosity of the alloy melt increased slowly with the decreasing of temperature before the formation of nondendritic alpha -phase, which caused the dramatic increase of apparent viscosity.展开更多
An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were grad...An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were gradually changed from elongated platelets tonear-spherical shapes by mechanical stirring. The spheroidization of primary St crystals occurs by the mechanism of bending and fractureof Si platelets, wear and collision between Si crystals, and coalescence of small Si particles. The influence of under-cooling and coolingrate of the alloy melt on primary Si crystals of semi-solid processed alloys is investigated as well. The increase of under-cooling andcooling rate decreases the size of primary Si crystals.展开更多
The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated....The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated. Lamellar structure consisted of Mo_5Si_3 (D8m) phaseand MoSi_2 (C11_b) phase was observed in all the alloys. For Mo_5Si_3-MoSi_2 hypoeutectic alloy, thelamellar structure was found only after annealing and developed well with fine spacing on the orderof hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96h, the well-developed lamellar structure was destroyed. For Mo_5Si_3-MoSi_2 hypereutectic alloy, thelamellar structure was found both before and after annealing. However the volume fraction andspacing of the lamellar structure did not change significantly before and after annealing. Theeffects of the formation, development and destruction of lamellar structure on Vickers hardness ofalloys were also investigated. When Mo_5Si_3-MoSi_2 hypoeutectic alloy annealed at 1200℃ for 48 h,the Vickers hardness was improved about 19% compared with that without annealing and formation oflamellar structure. The highest Vickers hardness of Mo5Si3-MoSi_2 hypereutectic was increasing about18% when annealing at 1200℃ for 48 h.展开更多
A Preliminary study of the effect of silicon additive on the structure and properites of C-B_4C-SiC composite was conducted. A liquid Phase has formed and the liquid Si reacts with C to form SiC at the grain boundary ...A Preliminary study of the effect of silicon additive on the structure and properites of C-B_4C-SiC composite was conducted. A liquid Phase has formed and the liquid Si reacts with C to form SiC at the grain boundary when sintering, which accelerates the sintering process and retards the grain growth. Consequently, the density and strength of the composite increase markedly. And the increase in the density increases the oxidation resistance and decreases the specific resistance of the composite. Furthermore,the C-B_4 C-SiC composite has good heat-shock resistance. The phenomena may be dueto the strengthening and toughening of microcracks.展开更多
A new molybdenum phosphate [Zn(Mo^v6P4O31H10)2(C4H144N3)2].2C4H13N3.8H2O 1 (C4H13N3 = diethylenetriamine) has been synthesized under hydrothermal condition. Single-crystal X-ray diffraction reveals that compound...A new molybdenum phosphate [Zn(Mo^v6P4O31H10)2(C4H144N3)2].2C4H13N3.8H2O 1 (C4H13N3 = diethylenetriamine) has been synthesized under hydrothermal condition. Single-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic, space group P21/n, a = 13.1679(3), b = 22.1240(6), c = 13.6146(3) A, β= 103.4847(7)°, V = 3856.95(16) A^3, C16H90N12O70P8ZnMo12, Mr = 3035.41, Z = 2, Dc = 2.614 g/cm^3, μ = 2.483 mm^-1, F(000) = 2968, S = 1.014, the final R = 0.0196 and wR = 0.0506 for 7486 observed reflections (1 〉 2σ(I)). Compound 1 consists of two identical rings of six edge-sharing MoOt, octahedra interconnected by one ZnO6 octahedron, whereas the PO4 tetrahedra which share their apices with the MoO6, octahedra are only located on one side of each Mo6, ring. The 2-charge of polyanion [Zn(Mo^v6P4O31H10)2]^2- unit is compensated in the crystal by two mono-protonated diethylenetriamines (C4H14N3)^+. By hydrogen bonding interactions the polyanion of compound 1 is interconnected to form pseudo threedimensional molybdophosphate. Other characterizations by elemental analyses, IR spectrum and fluorescent spectrum are also described.展开更多
A novel vanadium(V) oxoperoxo complex [VOO2(APTCH)(CH3OH)] (HAPTCH = 2-acetylpyridine thiophene-2-carboxylic hydrazone) has been synthesized and characterized by IR, TGA and X-ray single-crystal structure dete...A novel vanadium(V) oxoperoxo complex [VOO2(APTCH)(CH3OH)] (HAPTCH = 2-acetylpyridine thiophene-2-carboxylic hydrazone) has been synthesized and characterized by IR, TGA and X-ray single-crystal structure determination. The complex crystallizes in the monoclinic system, space group P21/c with a = 11.232(2), b = 10.762(2), c = 112.613(3), β = 99.44(3)°, V = 1504.1(5)3, Dc = 1.657 g·cm-3, Z = 4, F(000) = 768, μ = 0.827 mm-1, the final R = 0.0392 and wR = 0.1073 for 2266 observed reflections with I 〉 2σ(I). Single-crystal X-ray diffraction studies reveal that the vanadium(V) is coordinated by a tridentate ligand, methanol molecule and peroxo group to form a pentagonal-bipyramidal geometry. The crystal structure is stabilized by intermolecular hydrogen bonds of O-H···N and C-H···O.展开更多
The composition and structure of Ti 6Al 4V alloy plasma based ion implanted with nitrogen was investigated.The nitrogen depth distribution shows more antiballistic with distribution peak heightened with increased i...The composition and structure of Ti 6Al 4V alloy plasma based ion implanted with nitrogen was investigated.The nitrogen depth distribution shows more antiballistic with distribution peak heightened with increased implantation time(dose),and more like a parabola at the low implantation pulse voltage.When implantation pulse voltage is increased,the implantation depth increased with the nitrogen distribution peak being deepened,widened and lowered somewhat.TiN,TiN+Ti 2N,or Ti 2N second phases were formed in the implanted layer.The relative percentage of nitrogen content in the form of TiN increases when going deeper into the implanted(TiN formed) layer.The increase of implantation pulse width and/or time is favourable for the formation of TiN rather than Ti 2N.It is unfavourable for formation of any nitrides when implantation pulse voltage is decreased to 30kV or less.Tiny crystalline particles (made mainly of Ti 2N and a smaller percentage of TiO 2 phases) of regular shapes such as triangle and tetragon, etc .(about 20 nm) are found distrbuted dispersively in the near surface region of samples implanted at the high implantation pulse voltage (75kV).展开更多
Using a linked-parameter technique of level-fitting calculations in a multi configuration basis, a parametric analysis of fine structure (fs) for even-parity levels of V II, involving six configurations, has been perf...Using a linked-parameter technique of level-fitting calculations in a multi configuration basis, a parametric analysis of fine structure (fs) for even-parity levels of V II, involving six configurations, has been performed. This led us to exchange the assignments of two triplets, 3d3(2F)4s c 3F and 3d4 d 3F, reported in earlier analyses as being located at 30,300 cm-1 and 30,600 cm-1, respectively. This is confirmed by experimental hyperfine structure (hfs) A constants, used as fingerprints. Moreover, the current singlet 3d24s2 1D2 position is likely too high. The fs parameters, magnetic Landé g-factors, and the percentage of leading eigenvectors of levels are calculated. We present also predicted singlet, triplet and quintet positions for missing experimental levels up to 100,000 cm-1. The single-electron hfs parameters are determined in their entirety for 51V II for the model space (3d + 4s)4 with good accuracy. For the model space (3d + 4s)4 of 51V II the single-electron hfs parameters are computed;furthermore, our achieved theoretical evaluations of the single-electron hfs parameters, thanks to the use of ab initio calculations, reinforce the validity of these hfs parameter values, deduced from experimental data.展开更多
The 3d34p, 3d35p and 3d24s4p odd configurations of the V II spectrum have been reanalysed and three 3d24s4p triplets are assigned higher energies than previously proposed. We have determined the fine structure paramet...The 3d34p, 3d35p and 3d24s4p odd configurations of the V II spectrum have been reanalysed and three 3d24s4p triplets are assigned higher energies than previously proposed. We have determined the fine structure parameters, the largest and next largest eigenvector percentages of levels, their calculated Landé gJ-factors and predicted positions for missing experimental levels up to 100,000 cm-1 for the 3d24s4p configuration. Furthermore for the first time a hyperfine structure (HFS) parametric treatment, involving levels of these two configurations has been carried out. The deduced single-electron HFS parameter values are successfully checked with those obtained by means of ab initio calculations.展开更多
The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the inta...The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
基金supported by FCT through the grants PD/BD/140202/2018,SFRH/BD/140191/2018 and SFRH/BD/128657/2017the projects PTDC/EMS-TEC/5422/2014 and NORTE-01-0145-FEDER-000018-HAMa BICo+1 种基金supported by FCT with the reference project UID/EEA/04436/2019the financial support through the M-ERA-NET/0001/2015 project(FCT)
文摘Ti6Al4V cellular structures were produced by selective laser melting(SLM)and then filled either with beta-tricalcium phosphate(β-TCP)or PEEK(poly-ether-ether-ketone)through powder metallurgy techniques,to improve osteoconductivity and wear resistance.The corrosion behavior of these structures was explored considering its importance for the long-term performance of implants.Results revealed that the incorporation of open cellular pores induced higher electrochemical kinetics when being compared with dense structures.The impregnation ofβ-TCP and PEEK led to the creation of voids or gaps between the metallic matrix and the impregnated material which also influenced the corrosion behavior of the cellular structures.
基金financial supports by the National Natural Science Foundation of China(No.51772295)support of GTIIT for the collaboration,and the start-up fund provided by GTIIT
文摘To mitigate the massive volume expansion of Si-based anode during the charge/discharge cycles,we synthesized a superstructure of Si@Co±NC composite via the carbonization of zeolite imidazolate frameworks incorporated with Si nanoparticles.The Si@Co±NC is comprised of Sinanoparticle core and N-doped/Co-incorporated carbon shell,and there is void space between the core and the shell.When using as anode material for LIBs,Si@Co±NC displayed a super performance with a charge/discharge capacity of 191.6/191.4 mA h g^(-1)and a coulombic efficiency of 100.1%at 1000 mA g^(-1)after 3000 cycles,and the capacity loss rate is 0.022%per cycle only.The excellent electrochemical property of Si@Co±NC is because its electronic conductivity is enhanced by doping the carbon shell with N atoms and by incorporating with Co particles,and the pathway of lithium ions transmission is shortened by the hollow structure and abundant mesopores in the carbon shell.Also,the volume expansion of Si nanoparticles is well accommodated in the void space and suppressed by the carbon host matrix.This work shows that,through designing a superstructure for the anode materials,we can synergistically reduce the work function and introduce the confinement effect,thus significantly enhancing the anode materials’electrochemical performance in LIBs.
基金financial support from National Research Foundation(NRF), Pretoria, South Africa
文摘Ti-6 Al-4 V-Si3 N4 composites were effectively fabricated by spark plasma sintering(SPS) technique. The addition of Si_3 N_4 on Ti-6 AI-4 V was varied from 5% to 15%(wt fraction). The effect of Si_3 N_4 addition on the densification, microstructure, and microhardness and corrosion behaviour of Ti-6 Al-4 V was investigated.An increase in microhardness value was recorded from 325.46 HV_(0.1) to 585.73 HV_(0.1). X-ray diffraction(XRD) analysis showed that the intensity of diffraction peaks of Si3 N4 phase in the composites increased.The sintered Ti-6 Al-4 V reinforced with Si_3 N_4 compacts revealed the non-existence of intermediate phases, such as TiSi_2(titanium silicide) which was expected. SEM analysis of the spark plasma sintered composites revealed a and β phase microstructures in Ti-6 Al-4 V with uniform distribution of Si3 N4 particulates in the matrix. The corrosion resistance property of the material was improved by the addition of Si_3 N_4 from 0.986629 mm/year to 0.030547 mm/year.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.51672183)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.
基金supported by a Famous overseas professor project MS2011ZGDZ[BJ]019 through China University of Geosciences (Beijing)and by the USA NSF "Continental Geodynamics" programGeologists from the Panzhihua mining company are thanked for their logistic support
文摘The Panzhihua intrusion in southwest China is part of the Emeishan large igneous province and host of a large Fe-Ti-V ore deposit.In previous interpretations it was considered to be a layered,differentiated sill with the ore deposits at its base.New structural and petrological data suggest instead that the intrusion has an open S-shape,with two near-concordant segments joined by a discordant dyke-like segment. During emplacement of the main intrusion,multiple generations of mafic dykes invaded carbonate wall rocks,producing a large contact aureole.In the central segment,magmatic layering is oriented oblique to the walls of the intrusion.This layering cannot have formed by crystal settling or in-situ growth on the floor of the intrusion;instead we propose that it resulted from inward solidification of multiple,individually operating,convection cells.Ore formation was triggered by interaction of magma with carbonate wall rocks.
基金Supported by the National Natural Science Foundation of China under Grant No 11004142the Program for New Century Excellent Talents in University under Grant No 11-035the Project Sponsored by the Scientific Research Foundation for ROCS of the Ministry of Education of China
文摘The electronic structures and optical properties of the [llO]-oriented Sil-xGex nanowires (NWs) passivated with different functional groups (-H, -F and-OH) are investigated by using first-principles calculations. The results show that surface passivation influences the characteristics of electronic band structures significantly: the band gap widths and types (direct or indirect) of the Si1-xGe, NWs with different terminators show complex and robust variations, and the effective masses of the electrons in the NWs can be modulated dramatically by the terminators. The study of optical absorption shows that the main peaks of the parallel polarization component of Si1-x Gex NWs passivated with the functional groups exhibit prominent changes both in height and position, and are red-shifted with respect to those of corresponding pure Si NWs, indicating the importance of both the terminators and Ge concentrations. Our results demonstrate that the electronic and optical properties of Si1-xGex NWs can be tuned by utilizing selected functional groups as well as particular Ge concentrations for customizing purposes.
文摘The microstructural evolution and apparent viscosity of hypereutectic Al-24%Si alloy during semi-solid state shearing were studied with a Searte type viscometer. When the alloy melt was continuously stirred from 720 degreesC to eutectic temperature, the primary Si crystals were gradually changed from elongated platelets to near-spherical shapes. It was found that some nondendritic a-phase formed when the melt was stirred below 585 degreesC. The experiment showed that the semi-solid stirring had strong effect on inhibiting the anisotropic growth of Si crystals during solidification. The apparent viscosity of the alloy melt increased slowly with the decreasing of temperature before the formation of nondendritic alpha -phase, which caused the dramatic increase of apparent viscosity.
文摘An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were gradually changed from elongated platelets tonear-spherical shapes by mechanical stirring. The spheroidization of primary St crystals occurs by the mechanism of bending and fractureof Si platelets, wear and collision between Si crystals, and coalescence of small Si particles. The influence of under-cooling and coolingrate of the alloy melt on primary Si crystals of semi-solid processed alloys is investigated as well. The increase of under-cooling andcooling rate decreases the size of primary Si crystals.
文摘The microstructures and Vickers hardness at room temperature of arc-meltingprocessed intermetallics of Mo_5Si_3-MoSi_2 hypoeutectic alloy and hypereutectic alloy annealed at1200℃ for different time were investigated. Lamellar structure consisted of Mo_5Si_3 (D8m) phaseand MoSi_2 (C11_b) phase was observed in all the alloys. For Mo_5Si_3-MoSi_2 hypoeutectic alloy, thelamellar structure was found only after annealing and developed well with fine spacing on the orderof hundred nanometers after annealing at 1200℃ for 48 h. But when the annealing time was up to 96h, the well-developed lamellar structure was destroyed. For Mo_5Si_3-MoSi_2 hypereutectic alloy, thelamellar structure was found both before and after annealing. However the volume fraction andspacing of the lamellar structure did not change significantly before and after annealing. Theeffects of the formation, development and destruction of lamellar structure on Vickers hardness ofalloys were also investigated. When Mo_5Si_3-MoSi_2 hypoeutectic alloy annealed at 1200℃ for 48 h,the Vickers hardness was improved about 19% compared with that without annealing and formation oflamellar structure. The highest Vickers hardness of Mo5Si3-MoSi_2 hypereutectic was increasing about18% when annealing at 1200℃ for 48 h.
文摘A Preliminary study of the effect of silicon additive on the structure and properites of C-B_4C-SiC composite was conducted. A liquid Phase has formed and the liquid Si reacts with C to form SiC at the grain boundary when sintering, which accelerates the sintering process and retards the grain growth. Consequently, the density and strength of the composite increase markedly. And the increase in the density increases the oxidation resistance and decreases the specific resistance of the composite. Furthermore,the C-B_4 C-SiC composite has good heat-shock resistance. The phenomena may be dueto the strengthening and toughening of microcracks.
基金Project supported by the Natural Science Foundation of Fujian Province (E0310016) and the Education Committee Foundation of Fujian Province (JB05309)
文摘A new molybdenum phosphate [Zn(Mo^v6P4O31H10)2(C4H144N3)2].2C4H13N3.8H2O 1 (C4H13N3 = diethylenetriamine) has been synthesized under hydrothermal condition. Single-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic, space group P21/n, a = 13.1679(3), b = 22.1240(6), c = 13.6146(3) A, β= 103.4847(7)°, V = 3856.95(16) A^3, C16H90N12O70P8ZnMo12, Mr = 3035.41, Z = 2, Dc = 2.614 g/cm^3, μ = 2.483 mm^-1, F(000) = 2968, S = 1.014, the final R = 0.0196 and wR = 0.0506 for 7486 observed reflections (1 〉 2σ(I)). Compound 1 consists of two identical rings of six edge-sharing MoOt, octahedra interconnected by one ZnO6 octahedron, whereas the PO4 tetrahedra which share their apices with the MoO6, octahedra are only located on one side of each Mo6, ring. The 2-charge of polyanion [Zn(Mo^v6P4O31H10)2]^2- unit is compensated in the crystal by two mono-protonated diethylenetriamines (C4H14N3)^+. By hydrogen bonding interactions the polyanion of compound 1 is interconnected to form pseudo threedimensional molybdophosphate. Other characterizations by elemental analyses, IR spectrum and fluorescent spectrum are also described.
基金supported by the Scientific Research Common Program of Beijing Municipal Commission of Education, PRC (KM200910028011)
文摘A novel vanadium(V) oxoperoxo complex [VOO2(APTCH)(CH3OH)] (HAPTCH = 2-acetylpyridine thiophene-2-carboxylic hydrazone) has been synthesized and characterized by IR, TGA and X-ray single-crystal structure determination. The complex crystallizes in the monoclinic system, space group P21/c with a = 11.232(2), b = 10.762(2), c = 112.613(3), β = 99.44(3)°, V = 1504.1(5)3, Dc = 1.657 g·cm-3, Z = 4, F(000) = 768, μ = 0.827 mm-1, the final R = 0.0392 and wR = 0.1073 for 2266 observed reflections with I 〉 2σ(I). Single-crystal X-ray diffraction studies reveal that the vanadium(V) is coordinated by a tridentate ligand, methanol molecule and peroxo group to form a pentagonal-bipyramidal geometry. The crystal structure is stabilized by intermolecular hydrogen bonds of O-H···N and C-H···O.
文摘The composition and structure of Ti 6Al 4V alloy plasma based ion implanted with nitrogen was investigated.The nitrogen depth distribution shows more antiballistic with distribution peak heightened with increased implantation time(dose),and more like a parabola at the low implantation pulse voltage.When implantation pulse voltage is increased,the implantation depth increased with the nitrogen distribution peak being deepened,widened and lowered somewhat.TiN,TiN+Ti 2N,or Ti 2N second phases were formed in the implanted layer.The relative percentage of nitrogen content in the form of TiN increases when going deeper into the implanted(TiN formed) layer.The increase of implantation pulse width and/or time is favourable for the formation of TiN rather than Ti 2N.It is unfavourable for formation of any nitrides when implantation pulse voltage is decreased to 30kV or less.Tiny crystalline particles (made mainly of Ti 2N and a smaller percentage of TiO 2 phases) of regular shapes such as triangle and tetragon, etc .(about 20 nm) are found distrbuted dispersively in the near surface region of samples implanted at the high implantation pulse voltage (75kV).
文摘Using a linked-parameter technique of level-fitting calculations in a multi configuration basis, a parametric analysis of fine structure (fs) for even-parity levels of V II, involving six configurations, has been performed. This led us to exchange the assignments of two triplets, 3d3(2F)4s c 3F and 3d4 d 3F, reported in earlier analyses as being located at 30,300 cm-1 and 30,600 cm-1, respectively. This is confirmed by experimental hyperfine structure (hfs) A constants, used as fingerprints. Moreover, the current singlet 3d24s2 1D2 position is likely too high. The fs parameters, magnetic Landé g-factors, and the percentage of leading eigenvectors of levels are calculated. We present also predicted singlet, triplet and quintet positions for missing experimental levels up to 100,000 cm-1. The single-electron hfs parameters are determined in their entirety for 51V II for the model space (3d + 4s)4 with good accuracy. For the model space (3d + 4s)4 of 51V II the single-electron hfs parameters are computed;furthermore, our achieved theoretical evaluations of the single-electron hfs parameters, thanks to the use of ab initio calculations, reinforce the validity of these hfs parameter values, deduced from experimental data.
文摘The 3d34p, 3d35p and 3d24s4p odd configurations of the V II spectrum have been reanalysed and three 3d24s4p triplets are assigned higher energies than previously proposed. We have determined the fine structure parameters, the largest and next largest eigenvector percentages of levels, their calculated Landé gJ-factors and predicted positions for missing experimental levels up to 100,000 cm-1 for the 3d24s4p configuration. Furthermore for the first time a hyperfine structure (HFS) parametric treatment, involving levels of these two configurations has been carried out. The deduced single-electron HFS parameter values are successfully checked with those obtained by means of ab initio calculations.
文摘The intake air control system of a gasoline engine is a typical nonlinear system, and included among the adverse fac-tors that always induce poor idle-speed control stability are dead time and disturbances in the intake air control process. In this paper, to improve the responsiveness when idling with regard to disturbances, a mean-value engine model (MVEM) with dead time was constructed as the control object, and the two servo structures of sliding mode control (SMC) were studied for better idle control performance, especially in transient process of speed change. The simulation results confirmed that under the constraint condition of control input, the robustness of idle speed control that is being subjected to torque disturbances and noise disturbances can be greatly improved by use of the servo structure II.