The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric sin...The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.展开更多
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial...This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.展开更多
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good ac...The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.展开更多
In the present work the fatigue crack growth in AISI304 specimens is investigated experimentally. In 3D finite element analysis the virtual crack closure technique is applied to calculate distributions and variations ...In the present work the fatigue crack growth in AISI304 specimens is investigated experimentally. In 3D finite element analysis the virtual crack closure technique is applied to calculate distributions and variations of the stress intensity factor along the surface crack front. It is confirmed that the stress intensity factor along the surface crack front varies non-uniformly with crack growth. Crack growth rate is proportional to the stress intensity factor distribution in the 3D cracked specimen. The fatigue crack growth in surface cracked specimens can be described by the Forman model identified in conventional compact tension specimens. For crack growth in the free specimen surface the arc length seems more suitable to quantify crack progress. Geometry and loading configuration of the surface cracked specimen seem to not affect the fatigue crack growth substantially.展开更多
A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ...A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.展开更多
The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained base...The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.展开更多
The application of displacement and energy approaches to the determination of stress intensity factors in ultrasonic fatigue crack growth (fcg) studies is discussed.The particular advantages as well as the limitations...The application of displacement and energy approaches to the determination of stress intensity factors in ultrasonic fatigue crack growth (fcg) studies is discussed.The particular advantages as well as the limitations of the two approaches are evaluated.Two types of ultrasonic fatigue loading with different stress ratios are exerted on the specimen respectively: the ultrasonic fatigue loading with a stress ratio R=-1 and the ultrasonic fatigue excitations superposed upon a static mean stress with R>-1 From comparison the conclusion is formed that the energy approach developed in the investigation is more accurate,concise and suitable than commonly adopted approaches and/or formulas proposed.Experimental fcg data on a titanium alloy Ti-6Al-4V and the characteristic mechanism of the ultrasonic fcg are investigated.展开更多
In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape i...In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.展开更多
Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture beha...Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.展开更多
The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, where...The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.展开更多
A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple c...A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.展开更多
文摘The time-domain BEM was developed to analyze the dynamic stress intensity factor ( DSIF) of 3-D elastodynamic crack problems. To simulate the stress singularity along the front of a crack, eight-node isoparametric singular elements were used, and the DSIF for a semi-circular surface crack was firstly calculated based on displacement equation using the time-domain BEM formulation. The new scheme to determine the time step was brought forward. By the dynamic analysis program of time-domain BEM compiled by its, several numerical examples are presented, which demonstrate the unconditional stability and high accuracy of time-domain BEM applied to 3-D elastodynamic crack problems.
文摘This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
文摘The three-dimensional finite element method of lines is presented, and the basic processing description of 3D FEMOL in cracking questions is given in detail. Applications to 3D bodies with cracks indicate that good accuracy can be obtained with relatively coarse girds. In particular, application to the tension specimen shows very good agreement with the evaluation of stress intensity factors, which is better than the results of other methods. This implies a considerable potential for using this method in the 3D analysis of finite geometry solids and suggests a possible extension of this technique to nonlinear material behavior.
基金supported by the German Science Foundation(DFG, YU119/5-2)
文摘In the present work the fatigue crack growth in AISI304 specimens is investigated experimentally. In 3D finite element analysis the virtual crack closure technique is applied to calculate distributions and variations of the stress intensity factor along the surface crack front. It is confirmed that the stress intensity factor along the surface crack front varies non-uniformly with crack growth. Crack growth rate is proportional to the stress intensity factor distribution in the 3D cracked specimen. The fatigue crack growth in surface cracked specimens can be described by the Forman model identified in conventional compact tension specimens. For crack growth in the free specimen surface the arc length seems more suitable to quantify crack progress. Geometry and loading configuration of the surface cracked specimen seem to not affect the fatigue crack growth substantially.
文摘A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.
基金the National Natural Science Foundation of China (Nos. 11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘The interface crack problems in the two-dimensional(2D)decagonal quasicrystal(QC)coating are theoretically and numerically investigated with a displacement discontinuity method.The 2D general solution is obtained based on the potential theory.An analogy method is proposed based on the relationship between the general solutions for 2D decagonal and one-dimensional(1D)hexagonal QCs.According to the analogy method,the fundamental solutions of concentrated point phonon displacement discontinuities are obtained on the interface.By using the superposition principle,the hypersingular boundary integral-differential equations in terms of displacement discontinuities are determined for a line interface crack.Further,Green’s functions are found for uniform displacement discontinuities on a line element.The oscillatory singularity near a crack tip is eliminated by adopting the Gaussian distribution to approximate the delta function.The stress intensity factors(SIFs)with ordinary singularity and the energy release rate(ERR)are derived.Finally,a boundary element method is put forward to investigate the effects of different factors on the fracture.
文摘The application of displacement and energy approaches to the determination of stress intensity factors in ultrasonic fatigue crack growth (fcg) studies is discussed.The particular advantages as well as the limitations of the two approaches are evaluated.Two types of ultrasonic fatigue loading with different stress ratios are exerted on the specimen respectively: the ultrasonic fatigue loading with a stress ratio R=-1 and the ultrasonic fatigue excitations superposed upon a static mean stress with R>-1 From comparison the conclusion is formed that the energy approach developed in the investigation is more accurate,concise and suitable than commonly adopted approaches and/or formulas proposed.Experimental fcg data on a titanium alloy Ti-6Al-4V and the characteristic mechanism of the ultrasonic fcg are investigated.
基金Project supported by the National Natural Science Foundation of China (Nos. 11572289, 1171407,11702252, and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.
文摘Fracture processes in ship-building structures are in many cases of a 3-D character. A finite element (FE) model of an all fracture mode (AFM) specimen was built for the study of 3-D mixed mode crack fracture behavior including modes Ⅰ,Ⅱ, and Ⅲ. The stress intensity factors (SIFs) were calculated by the modified virtual crack closure integral (MVCCI) method, and the crack initiation angle assessment was based on a recently developed 3-D fracture criterion--the Richard criterion. It was shown that the FE model of the AFM-specimen is applicable for investigations under general mixed mode loading conditions, and the computational results of crack initiation angles are in agreement with some available experimental findings. Thus, the applicability of the FE model of the AFM-specimen for mixed mode loading conditions and the validity of the Richard criterion can be demonstrated.
基金the National Institute of Standards and Technologythe Army Office of Research
文摘The Self-Similar Crack Expansion (SSCE) method is used to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique, whereby, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface. For elements on the crack surface, regular integrals and singular integrals are precisely evaluated based on closed form expressions, which improves the accuracy. Examples shaw that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than 1% as compared with analytical solutions. The stress intensity factors of subsurface cracks ate in good agreement with other analytical solutions.
基金the National Natural Science Foundation of China(Grant Nos 51609240,11572009&51538001)and the National Basic Research Program of China(Grant No 2014CB047100)
文摘A three-node triangular element fitted to numerical manifold method with continuous nodal stress, called Trig_3-CNS(NMM)element, was recently proposed for linear elastic continuous problems and linear elastic simple crack problems. The Trig_3-CNS(NMM) element can be considered as a development of both the Trig_3-CNS element and the numerical manifold method(NMM).Inheriting all the advantages of Trig_3-CNS element, calculations using Trig_3-CNS(NMM) element can obtain higher accuracy than Trig_3 element without extra degrees of freedom(DOFs) and yield continuous nodal stress without stress smoothing. Inheriting all the advantages of NMM, Trig_3-CNS(NMM) element can conveniently treat crack problems without deploying conforming mathematical mesh. In this paper,complex problems such as a crucifix crack and a star-shaped crack with many branches are studied to exhibit the advantageous features of the Trig_3-CNS(NMM) element. Numerical results show that the Trig_3-CNS(NMM) element is prominent in modeling complex crack problems.