La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by...La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.展开更多
Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. ...Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃ , Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.展开更多
Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to...Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to a heat-treatment test at 750 ℃, were characterized by means of XRD, BET, XPS and UV-Vis absorption techniques. The photocatalytic oxidation reactions of benzene, toluene and xylene were used as the model reaction to measure the photocatalytic activity of Bi 2O 3 nanoparticles, respectively. The results show that the crystallite size of Bi 2O 3 prepared with different methods and calcined at 750 ℃ were 50.6, 38.5 and 31.5 nm, respectively. The photocatalytic activity of Bi 2O 3 nanoparticles prepared with the microemulsion chemical method was higher than that of the particles prepared with the polyol mediated method; and that of the particles prepared with the micromulsion chemical method was the highest among the three. The degradation rates of the three pollutants xylene, toluene and benzene decreased in sequence.展开更多
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studi...Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.展开更多
The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,lead...The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,leading to difficulties in establishing the relationship between the mixture properties and the aggregate morphology by using laboratory methods.The discrete element method(DEM)is an effective way widely adopted to reconstruct the morphology of particles and simulate performance tests of granular materials.However,selecting limited particles characterizing a real particle-assembly for simulation is still a challenge in current research due to the inherent rich variability of particle shapes.In this study,based on the acquisition of three-dimensional(3D)aggregate shapes by using laser scanning,ellipsoid index(EDI)translating the particle shape as a function of surface area,volume,and contour length is proposed to comprehensively evaluate aggregate morphology.Further,a particle library capable of characterizing aggregate morphology distribution is established based on the statistics of the corresponding morphological characteristics of particle samples.The model reliability is validated by carrying out a series of experimental and numerical penetration tests with nine different gradations.The established particle library can be used to model aggregate mixtures and the proposed simulation framework is promising for optimizing the mixture gradation design numerically.展开更多
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as pr...YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.展开更多
A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachlor...A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.展开更多
Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X...Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)techniques were utilized to characterize the synthesized powders.The results revealed that the dominant phases after mechanical activation were hydroxyapatite,anatase(TiO_(2))and periclase(MgO);while after thermal annealing process at 700℃,hydroxyapatite along with geikielite(MgTiO_(3))and periclase(MgO)were the major phases.Based on the XRD analysis,the evaluation of structural features of the samples indicated that the average crystallite sizes of hydroxyapatite after 10 h of milling and subsequent thermal treatment at 700℃were about 21 nm and 34 nm,respectively.Microscopic observations illustrated that the synthesized powders contained large agglomerates which consisted of significantly finer particles with spheroidal morphology.It is concluded that the mechanothermal method can be used to produce hydroxyapatite-based nanocomposite with appropriate structural and morphological features.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160he National Basic Research Program of China under Grant No 2012CB921504the Special Fund for Public Interest of China under Grant No201510068
文摘La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.
文摘Spherical Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 was prepared via the homogenous precursors produced by solution spray-drying method. The precursors were sintered at different temperatures between 600 and 1 000 ℃ for 10 h. The impacts of different sintering temperatures on the structure and electrochemical performances of Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 were compared by means of X-ray diffractometry(XRD), scanning electron microscopy(SEM), and charge/discharge test as cathode materials for lithium ion batteries. The experimental results show that the spherical morphology of the spray-dried powers maintains during the subsequent heat treatment and the specific capacity increases with rising sintering temperature. When the sintering temperature rises up to 900 ℃ , Li(Ni_(1/3)Mn_(1/3)Co_(1/3))O_2 attains a reversible capacity of 153 mA·h/g between 3.00 and 4.35 V at 0.2C rate with excellent cyclability.
基金the National Natural Science Foundation of China(No.2 0 2 770 15 )
文摘Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to a heat-treatment test at 750 ℃, were characterized by means of XRD, BET, XPS and UV-Vis absorption techniques. The photocatalytic oxidation reactions of benzene, toluene and xylene were used as the model reaction to measure the photocatalytic activity of Bi 2O 3 nanoparticles, respectively. The results show that the crystallite size of Bi 2O 3 prepared with different methods and calcined at 750 ℃ were 50.6, 38.5 and 31.5 nm, respectively. The photocatalytic activity of Bi 2O 3 nanoparticles prepared with the microemulsion chemical method was higher than that of the particles prepared with the polyol mediated method; and that of the particles prepared with the micromulsion chemical method was the highest among the three. The degradation rates of the three pollutants xylene, toluene and benzene decreased in sequence.
文摘Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.
基金supported by Shandong Hi-speed Group Co.,Ltd.Maintenance Technology Project(grant no.2017B61)National Natural Science Foundation of China(no.52108393)+1 种基金the Fundamental Research Funds for the Central Universities,CHD(no.300102211307)China Scholarship Council(no.201806560055).
文摘The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,leading to difficulties in establishing the relationship between the mixture properties and the aggregate morphology by using laboratory methods.The discrete element method(DEM)is an effective way widely adopted to reconstruct the morphology of particles and simulate performance tests of granular materials.However,selecting limited particles characterizing a real particle-assembly for simulation is still a challenge in current research due to the inherent rich variability of particle shapes.In this study,based on the acquisition of three-dimensional(3D)aggregate shapes by using laser scanning,ellipsoid index(EDI)translating the particle shape as a function of surface area,volume,and contour length is proposed to comprehensively evaluate aggregate morphology.Further,a particle library capable of characterizing aggregate morphology distribution is established based on the statistics of the corresponding morphological characteristics of particle samples.The model reliability is validated by carrying out a series of experimental and numerical penetration tests with nine different gradations.The established particle library can be used to model aggregate mixtures and the proposed simulation framework is promising for optimizing the mixture gradation design numerically.
基金Project supported by China Postdoctoral Science Foundation (20100471663)Science and Technology Program of Yantai Citiy (2008151)+1 种基金Natural Science Foundation of Shandong Province (ZR2009BL013)Innovation Group Foundation Plan of Ludong University
文摘YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.
文摘A modified wet chemical route for low-temperature synthesis of the calcium stannate CaSnO3, a potentialmaterial for dielectric applications is reported. Firstly, a precursor CaSn(OH)6 was prepared using tin tetrachloride,calcium chloride and sodium hydroxide at room temperature. Then the precursor was annealed at relatively low tem-perature of 600 ℃ to obtain CaSnO3. The phase identification, thermal behavior and surface morphology of the sam-ples were characterized by element analysis, X-ray diffraction (XRD), thermo-gravimetric (TG) analysis and deriva-tive thermo-gravimetric (DTG) analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron mi-croscopy (SEM) in detail. The results show that CaSnO3 obtained by this method possesses a cubic perovskitestructure with average grain size of 5 μm.
基金research affairs of Islamic Azad University,Najafabad Branch,for supporting this research.
文摘Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)techniques were utilized to characterize the synthesized powders.The results revealed that the dominant phases after mechanical activation were hydroxyapatite,anatase(TiO_(2))and periclase(MgO);while after thermal annealing process at 700℃,hydroxyapatite along with geikielite(MgTiO_(3))and periclase(MgO)were the major phases.Based on the XRD analysis,the evaluation of structural features of the samples indicated that the average crystallite sizes of hydroxyapatite after 10 h of milling and subsequent thermal treatment at 700℃were about 21 nm and 34 nm,respectively.Microscopic observations illustrated that the synthesized powders contained large agglomerates which consisted of significantly finer particles with spheroidal morphology.It is concluded that the mechanothermal method can be used to produce hydroxyapatite-based nanocomposite with appropriate structural and morphological features.