期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
5G Ultra-Dense Network Fingerprint Positioning Method Based on Matrix Completion 被引量:1
1
作者 Yuexia Zhang Chong Liu 《China Communications》 SCIE CSCD 2023年第3期105-118,共14页
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t... The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm. 展开更多
关键词 indoor positioning fingerprint matching matrix completion 5g UDN RSSI
下载PDF
Wireless Positioning:Technologies,Applications,Challenges,and Future Development Trends
2
作者 Xingwang Li Hua Pang +4 位作者 Geng Li Junjie Jiang Hui Zhang Changfei Gu Dong Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1135-1166,共32页
The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industri... The development of the fifth-generation(5G)mobile communication systems has entered the commercialization stage.5G has a high data rate,low latency,and high reliability that can meet the basic demands of most industries and daily life,such as the Internet of Things(IoT),intelligent transportation systems,positioning,and navigation.The continuous progress and development of society have aroused wide concern.Positioning accuracy is the core demand for the applications,especially in complex environments such as airports,warehouses,supermarkets,and basements.However,many factors also affect the accuracy of positioning in those environments,for example,multipath effects,non-line-of-sight,and clock synchronization errors.This paper provides a comprehensive review of the existing works about positioning for the future wireless network and discusses its key techniques and algorithms,as well as the current development and future directions.We first outline the current traditional positioning technologies and algorithms,which are discussed and analyzed with the relevant literature.In addition,we also discuss application scenarios for wireless localization.By comparing different positioning systems,the challenges and future development directions of existing wireless positioning systems are prospected. 展开更多
关键词 5g wireless positioning reconfigurable intelligent surface Internet of Vehicles
下载PDF
Future 5G-Oriented System for Urban Rail Transit:Opportunities and Challenges 被引量:20
3
作者 Junhui Zhao Jin Liu +2 位作者 Lihua Yang Bo Ai Shanjin Ni 《China Communications》 SCIE CSCD 2021年第2期1-12,共12页
As a development direction of urban rail transit system,the train autonomous circumambulate system(TACS)can operate in a safer,more efficient,and more economical mode.However,most urban rail transit systems transmit s... As a development direction of urban rail transit system,the train autonomous circumambulate system(TACS)can operate in a safer,more efficient,and more economical mode.However,most urban rail transit systems transmit signals through industrial,scientific,and medical(ISM)frequency bands or narrow frequency bands,which cannot meet the requirements of TACS.As a promising solution,the 5th generation(5G)mobile communication provides more services for the future urban rail transit systems,and covers the shortages of exiting communication technologies in terms of capacity and reliability.In this paper,we first briefly review the research status of current train control system and introduce its limitations.Next,we propose a novel network architecture,and present new technologies and requirements of the proposed architecture for TACS.Some potential challenges are then discussed to give insights for further research of TACS. 展开更多
关键词 urban rail transit train autonomous circumambulate system(TACS) prospective review the 5th-generation(5g) train to train(T2T)communication reinforcement learning(RL)
下载PDF
Structure and performance analysis of fusion positioning system with a single 5G station and a single GNSS satellite
4
作者 Chi Guo Shufeng Qi +2 位作者 Wenfei Guo Chenlong Deng Jingnan Liu 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第1期94-106,共13页
NaGlobal vigation Satellite System(GNSS)positioning technology is widely used for its high precision,global,and all-weather service.However,in complex environments such as urban canyons,GNSS performance is often degra... NaGlobal vigation Satellite System(GNSS)positioning technology is widely used for its high precision,global,and all-weather service.However,in complex environments such as urban canyons,GNSS performance is often degraded due to signal occlusion and even fails to achieve positioning due to the insufficient visible satellites.Because of the characteristics of large band-width,low latency,and high Base Station(BS)density,the fifth-Generation mobile communication(5G)technology has gradually become a trend for positioning in cities while offering traditional communication service.To supply the communication demands of the User Equipment(UE),only one BS is usually considered to establish a connection with the UE during the BS construction.However,the positioning accuracy with a single BS in urban canyons will be significantly reduced.To further improve the positioning accuracy in such extreme scenarios,this paper proposes a simplified 5G/GNSS fusion positioning system architecture using observations from only a 5G BS and a GNSS satellite.In this system,the GNSS receiver is mounted on the 5G BS,and the measurements provided by the receiver are used to form the differential code and complete the position estimation.The positioning mathematical models of the system based on the original code and differential code are derived.Then,the impacts of the measurements noise and the time synchronization error on the positioning accuracy are analyzed theoretically.Finally,the positioning performance is investigated by a set of simulation experiments.Numerical results show that under the existing 5G measurement noise and 2 m’s code measurement noise,the improvement of the differential code based fusion positioning compared with the 5G-only positioning is more than 32%,which is also about 6%higher than the original code based fusion positioning.Besides,this improvement is not affected by the time synchronization error between the BS and the GNSS satellite. 展开更多
关键词 The fifth-generation mobile communication(5g)positioning 5g/global navigation satellite system(gNSS)fusion positioning differential code error analysis
原文传递
Performance improvement of 5G positioning utilizing multi-antenna angle measurements
5
作者 Wenfei Guo Yue Deng +2 位作者 Chi Guo Shufeng Qi Jingrong Wang 《Satellite Navigation》 2022年第3期193-206,I0005,共15页
Time delay-based the 5th Generation Mobile Communication Technology(5G)positioning is a main method to perform high-precision positioning in Global Navigation Satellite System(GNSS)denied areas.However,in practical ap... Time delay-based the 5th Generation Mobile Communication Technology(5G)positioning is a main method to perform high-precision positioning in Global Navigation Satellite System(GNSS)denied areas.However,in practical applications,the occlusion of signals in a complex environment results in few observable base stations,which affects the reliability and accuracy of positioning.The aim of this study is to improve the performance of the 5G positioning in complex environments with an insufficient number of observable base stations.First,the Angle of Departure(AOD)capability of multi-antennas is integrated into Multi-Round-Trip-Time(Multi-RTT)positioning,establishing a novel 5G RTT/AOD positioning model.Then,the influencing factors of positioning performance,including the Dilution of Precision(DOP)and the accuracy of the AOD measurements,is analyzed.The relationship between DOP and RTT/AOD positioning accuracy is deduced.Afterwards,simulation experiments are performed on 5G positioning with the Multi-RTT and RTT/AOD methods in two scenarios with good and complex environments.The theoretical analysis and experimental results show that 5G positioning with the RTT/AOD method increases the horizontal and vertical accuracies by approximately 25 and 65%,respectively,compared with the Multi-RTT method.The positioning reliability is also greatly improved.The proposed model can well solve the inefficiency of 5G positioning with the RTT method in scenarios where the number of base stations is less than three. 展开更多
关键词 5g positioning Angle of departure positioning accuracy positioning reliability
原文传递
A flexible scheduling algorithm for the 5th-generation networks
6
作者 Lanlan Li Wentao Shao Xin Zhou 《Intelligent and Converged Networks》 2021年第2期101-107,共7页
At present,the 5th-Generation(5G)wireless mobile communication standard has been released.5G networks efficiently support enhanced mobile broadband traffic,ultra-reliable low-latency communication traffic,and massive ... At present,the 5th-Generation(5G)wireless mobile communication standard has been released.5G networks efficiently support enhanced mobile broadband traffic,ultra-reliable low-latency communication traffic,and massive machine-type communication.However,a major challenge for 5G networks is to achieve effective Radio Resource Management(RRM)strategies and scheduling algorithms to meet quality of service requirements.The Proportional Fair(PF)algorithm is widely used in the existing 5G scheduling technology.In the PF algorithm,RRM assigns a priority to each user which is served by gNodeB.The existing metrics of priority mainly focus on the flow rate.The purpose of this study is to explore how to improve the throughput of 5G networks and propose new scheduling schemes.In this study,the package delay of the data flow is included in the metrics of priority.The Vienna 5G System-Level(SL)simulator is a MATLAB-based SL simulation platform which is used to facilitate the research and development of 5G and beyond mobile communications.This paper presents a new scheduling algorithm based on the analysis of different scheduling schemes for radio resources using the Vienna 5G SL simulator. 展开更多
关键词 5th-generation(5g) radio resource management channel status information reporting scheduling schemes Vienna simulator
原文传递
Synergies for Trains and Cars Automation in the Era of Virtual Networking
7
作者 Francesco Rispoli Alessandro Neri +2 位作者 Cosimo Stallo Pietro Salvatori Fortunato Santucci 《Journal of Transportation Technologies》 2018年第3期175-193,共19页
The ERTMS (European Train Management System) has been developed by the European Union (EU) to enhance safety, increase efficiency and to cross-border interoperability creating a unique solution fulfilling a standardiz... The ERTMS (European Train Management System) has been developed by the European Union (EU) to enhance safety, increase efficiency and to cross-border interoperability creating a unique solution fulfilling a standardized certification process. The ERTMS being able to automatically stop the train to overcome human errors has achieved the highest track record in terms of safety over several billion km travelled each years. GNSS positioning, bearer-independent telecoms and ATO (Automatic Train Operation) are the new features for enhancing the ERTMS in the path to fully autonomous operations. In the same period, the automotive industry has launched ambitious plans for the connected cars and autonomous driving applications are emerging as the next wave of innovation. This paper evaluates the challenges to sharing intelligent infrastructure means, by combining the strengths of the safety benchmark achieved on the rail transport with the mass production capability of the automotive industry to lower the costs. In this scenario, rail and automotive becoming tightly intertwined can get a grip in the race towards a fully automation affordable and safe, giving birth to autonomous vehicles able to travel within virtual rails as “trains” on the road. To this aim we will introduce the two test bed in Italy respectively for validating the ERTMS with GNSS positioning and public telecoms networks and for testing FCA Ducato vans to operate at SAE level 3 automation exploiting the new GALILEO and 5 G services. 展开更多
关键词 TRAIN Control System ERTMS Satellite positioning 5g Autonomous Vehicles
下载PDF
Internet of radio and light:5G building network radio and edge architecture 被引量:1
8
作者 Yue Zhang Hequn Zhang +12 位作者 John Cosmas Nawar Jawad Kareem Ali Ben Meunier Adam Kapovits Li-Ke Huang Wei Li Lina Shi Xun Zhang Jintao Wang Israel Koffman Muller Robert Charilaos C.Zarakovitis 《Intelligent and Converged Networks》 2020年第1期37-57,共21页
The Internet of Radio-Light(IoRL)is a cutting-edge system paradigm to enable seamless 5G service provision in indoor environments,such as homes,hospitals,and museums.The system draws on innovative architectural struct... The Internet of Radio-Light(IoRL)is a cutting-edge system paradigm to enable seamless 5G service provision in indoor environments,such as homes,hospitals,and museums.The system draws on innovative architectural structure that sits on the synergy between the Radio Access Network(RAN)technologies of millimeter Wave communications(mmWave)and Visible Light Communications(VLC)for improving network throughput,latency,and coverage compared to existing efforts.The aim of this paper is to introduce the IoRL system architecture and present the key technologies and techniques utilised at each layer of the system.Special emphasis is given in detailing the IoRL physical layer(Layer 1)and Medium Access Control layer(MAC,Layer 2)by means of describing their unique design characteristics and interfaces as well as the robust IoRL methods of improving the estimation accuracy of user positioning relying on uplink mmWave and downlink VLC measurements. 展开更多
关键词 5g Internet of Radio-Light(IoRL) Visible Light Communications(VLC) millimeterWave communications(mmWave) Remote Radio Light Head(RRLH) Network Function Virtualization(NFV) Software Defined Network(SDN) positioning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部