AIM: To evaluate the expression of special AT-rich sequence-binding protein 1 (SATB1 ) gene in colorectal cancer and its role in colorectal cancer cell proliferation and invasion.METHODS: Immunohistochemistry was used...AIM: To evaluate the expression of special AT-rich sequence-binding protein 1 (SATB1 ) gene in colorectal cancer and its role in colorectal cancer cell proliferation and invasion.METHODS: Immunohistochemistry was used to detect the protein expression of SATB1 in 30 colorectal cancer (CRC) tissue samples and pair-matched adjacent nontumor samples. Cell growth was investigated after enhancing expression of SATB1. Wound-healing assay and Transwell assay were used to investigate the impact of SATB1 on migratory and invasive abilities of SW480 cells in vitro . Nude mice that received subcutaneous implantation or lateral tail vein were used to study the effects of SATB1 on tumor growth or metastasis in vivo . RESULTS: SATB1 was over-expressed in CRC tissues and CRC cell lines. SATB1 promotes cell proliferation and cell cycle progression in CRC SW480 cells. SATB1 over-expression could promote cell growth in vivo . In addition, SATB1 could significantly raise the ability of cell migration and invasion in vitro and promote the ability of tumor metastasis in vivo . SATB1 could up-regulate matrix metalloproteases 2, 9, cyclin D1 and vimentin, meanwhile SATB1 could down-regulate E-cadherin in CRC. CONCLUSION: SATB1 acts as a potential growth and metastasis promoter in CRC. SATB1 may be useful as a therapeutic target for CRC.展开更多
Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladde...Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladder cancer patients.AT-rich interaction domain 1A(ARID1A)gene mutation occurs frequently in bladder cancer;however,the role of CDDP sensitivity in BC has not been studied.Methods We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology.IC50 determination,flow cytometry analysis of apoptosis,and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A.qRT-PCR,Western blotting,RNA interference,bioinformatic analysis,and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC.Results It was found that ARID1A inactivation was associated with CDDP resistance in BC cells.Mechanically,loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3(EIF4A3)through epigenetic regulation.Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399(circ0008399),a novel circular RNA(circRNA)identified in our previous study,which,to some extent,showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells.Importantly,EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP.Conclusion Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.展开更多
AIM: To explore the association between AT-rich interactive domain 1A (ARID1A) protein loss by immunohistochemistry and both clinicopathologic characteristics and prognosis in patients with colorectal cancer.
BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB...BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB1 binding site located between P1 and P2 promoters of the BCL2 gene.The candidate SATB1 binding sequence predicted by bioinformatic analysis was investigated in vitro and in vivo by electrophoretic gel mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP).One 25-bp sequence,named SB1,was confirmed to be SATB1 binding site.The regulatory function of SB1 and its relevance to SATB1 were further examed with dual-luciferase reporter assay system in Jurkat cells.We found that SB1 could negatively regulate reporter gene activity.Mutation of SATB1 binding site further repressed the activity.Knockdown of SATB1 also enhanced this negative effect of SB1.Our data indicate that the SB1 sequence possesses negative transcriptional regulatory function and this function can be antagonized by SATB1.展开更多
Baicalein had been proved to have anti-cancer activity in vitro and in vivo, including the inhibition of malignant proliferation, migration, adhesion and invasion of many kinds of cancer cells. The special AT-rich seq...Baicalein had been proved to have anti-cancer activity in vitro and in vivo, including the inhibition of malignant proliferation, migration, adhesion and invasion of many kinds of cancer cells. The special AT-rich sequence binding protein 1 (SATB1) is a tissue-specific expression of nuclear matrix-binding protein and is reported to be a breast cancer "gene group organizer". Previous studies have shown that SATB1 is involved in the growth, metastasis and prognosis of breast cancer. The present study was aimed to investigate whether baicalein inhibits the proliferation and migration of MDA-MB-231 human breast cancer cells through down-regulation of the SATB1 expression. Methods: MDA-MB-231 cells were treated for 24 h, 48 h and 72 h with various concentrations of baicalein (0, 5, 10, 20, 40 and 80 pM) respectively. Then, the proliferation and migration of MDA-MB-231 cells following treatment with baicalein were determined using colorimetric 3-(4, 5-dimethylthia- zol-2-yl) 2, 5-diphenyltetrazolium bromide (MTT) and wound healing assays. Thereafter, western blot analysis was performed to detect the changes of SATB1 protein expression in MDA-MB-231 cells. Results: Along with the prolongation of time and increase of drug concentration, inhibitory effect of baicalein on proliferation and migration of MDA-MB-231 cells gradually in- creased, in a time.- and dose- dependent manner (P 〈 0.05). Meanwhile, after treated with baicalein in different concentrations for 48 h, the level of SATB1 protein expression of MDA-MB-231 cells decreased obviously, in a dose-dependent manner (P 〈 0.05). Conclusion: Baicalein inhibits breast cancer cell proliferation and suppresses its invasion and metastasis by reducing cell migration possibly by down-regulation of the SATB1 protein expression, indicating that baicalein is a potential therapeutic agent for human breast cancer.展开更多
SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARI...SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARID1A as a tumor suppressor because AR1D1A/BAF250a (SWI1) subunit of the SWI/SNF chromatin-remodeling complex has emerged as recurrently mutated in a broad array of tumor types. But the crystal structure of SWI1 has not been solved as yet. Using docking and molecular dynamics, we predicted the DNA interaction pattern of human SWI1 ARID and made comparisons with the other two representative ARID family members, human Mrf-2 ARID and Drosophila Dri ARID. Dynamic results revealed that the N-terminal and loop L1 of SWI1 ARID bound with the DNA major groove, while the loop L2 and helix H6 bound with the minor groove. Moreover, it was found that SWI1 ARID bound with DNA apparently in a sequence-nonspecific manner. It was concluded that SWI1 ARID can form stable complex with sequence-nonspecific DNA segment comparing to Mrf-2 ARID/DNA and Dri ARID/DNA sequence-specific complexes.展开更多
Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-relat...Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues. Methods cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment. Results In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22). Conclusion This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.展开更多
基金Supported by The National Natural Science Foundation of China, No. 81101580
文摘AIM: To evaluate the expression of special AT-rich sequence-binding protein 1 (SATB1 ) gene in colorectal cancer and its role in colorectal cancer cell proliferation and invasion.METHODS: Immunohistochemistry was used to detect the protein expression of SATB1 in 30 colorectal cancer (CRC) tissue samples and pair-matched adjacent nontumor samples. Cell growth was investigated after enhancing expression of SATB1. Wound-healing assay and Transwell assay were used to investigate the impact of SATB1 on migratory and invasive abilities of SW480 cells in vitro . Nude mice that received subcutaneous implantation or lateral tail vein were used to study the effects of SATB1 on tumor growth or metastasis in vivo . RESULTS: SATB1 was over-expressed in CRC tissues and CRC cell lines. SATB1 promotes cell proliferation and cell cycle progression in CRC SW480 cells. SATB1 over-expression could promote cell growth in vivo . In addition, SATB1 could significantly raise the ability of cell migration and invasion in vitro and promote the ability of tumor metastasis in vivo . SATB1 could up-regulate matrix metalloproteases 2, 9, cyclin D1 and vimentin, meanwhile SATB1 could down-regulate E-cadherin in CRC. CONCLUSION: SATB1 acts as a potential growth and metastasis promoter in CRC. SATB1 may be useful as a therapeutic target for CRC.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81974396,No.81874091,No.82072840,and No.82102734)the Natural Science Foundation of Hubei Province(No.2020CFB829)the Health Commission of Hubei Province Scientific Research Project(No.WJ2021F081).
文摘Objective Cisplatin(CDDP)-based chemotherapy is a first-line,drug regimen for muscle-invasive bladder cancer(BC)and metastatic bladder cancer.Clinically,resistance to CDDP restricts the clinical benefit of some bladder cancer patients.AT-rich interaction domain 1A(ARID1A)gene mutation occurs frequently in bladder cancer;however,the role of CDDP sensitivity in BC has not been studied.Methods We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology.IC50 determination,flow cytometry analysis of apoptosis,and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A.qRT-PCR,Western blotting,RNA interference,bioinformatic analysis,and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC.Results It was found that ARID1A inactivation was associated with CDDP resistance in BC cells.Mechanically,loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3(EIF4A3)through epigenetic regulation.Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399(circ0008399),a novel circular RNA(circRNA)identified in our previous study,which,to some extent,showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells.Importantly,EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP.Conclusion Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.
基金Supported by National High Technology Research and Development Program of China(863 Program),No.2012AA02A506National Natural Science Foundation of China,No.81372570+1 种基金the Science and Technology Foundation of Guangdong Province,China,No.2012B031800088the Science and Technology Foundation of Guangdong Province,China,No.C2011019
文摘AIM: To explore the association between AT-rich interactive domain 1A (ARID1A) protein loss by immunohistochemistry and both clinicopathologic characteristics and prognosis in patients with colorectal cancer.
基金supported by grants from the National Natural Science Foundation of China (No. 30772490)and Special Major National Natural Science Foundation of China (No. 90919051)
文摘BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB1 binding site located between P1 and P2 promoters of the BCL2 gene.The candidate SATB1 binding sequence predicted by bioinformatic analysis was investigated in vitro and in vivo by electrophoretic gel mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP).One 25-bp sequence,named SB1,was confirmed to be SATB1 binding site.The regulatory function of SB1 and its relevance to SATB1 were further examed with dual-luciferase reporter assay system in Jurkat cells.We found that SB1 could negatively regulate reporter gene activity.Mutation of SATB1 binding site further repressed the activity.Knockdown of SATB1 also enhanced this negative effect of SB1.Our data indicate that the SB1 sequence possesses negative transcriptional regulatory function and this function can be antagonized by SATB1.
基金Supported by grants from the National Natural Science Foundation of China(No.81274136)Xi’an Jiaotong University’s Cross Project Funds(No.Xjj2012141)the Talent Funds of the Second Affiliated Hospitalof Xi’an Jiaotong University(No.RCCGG201105)
文摘Baicalein had been proved to have anti-cancer activity in vitro and in vivo, including the inhibition of malignant proliferation, migration, adhesion and invasion of many kinds of cancer cells. The special AT-rich sequence binding protein 1 (SATB1) is a tissue-specific expression of nuclear matrix-binding protein and is reported to be a breast cancer "gene group organizer". Previous studies have shown that SATB1 is involved in the growth, metastasis and prognosis of breast cancer. The present study was aimed to investigate whether baicalein inhibits the proliferation and migration of MDA-MB-231 human breast cancer cells through down-regulation of the SATB1 expression. Methods: MDA-MB-231 cells were treated for 24 h, 48 h and 72 h with various concentrations of baicalein (0, 5, 10, 20, 40 and 80 pM) respectively. Then, the proliferation and migration of MDA-MB-231 cells following treatment with baicalein were determined using colorimetric 3-(4, 5-dimethylthia- zol-2-yl) 2, 5-diphenyltetrazolium bromide (MTT) and wound healing assays. Thereafter, western blot analysis was performed to detect the changes of SATB1 protein expression in MDA-MB-231 cells. Results: Along with the prolongation of time and increase of drug concentration, inhibitory effect of baicalein on proliferation and migration of MDA-MB-231 cells gradually in- creased, in a time.- and dose- dependent manner (P 〈 0.05). Meanwhile, after treated with baicalein in different concentrations for 48 h, the level of SATB1 protein expression of MDA-MB-231 cells decreased obviously, in a dose-dependent manner (P 〈 0.05). Conclusion: Baicalein inhibits breast cancer cell proliferation and suppresses its invasion and metastasis by reducing cell migration possibly by down-regulation of the SATB1 protein expression, indicating that baicalein is a potential therapeutic agent for human breast cancer.
基金supported by the College Scientific and Technological Innovation Project of Huazhong University of Science and Technology(No.15A263)
文摘SWI 1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich in- teraction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARID1A as a tumor suppressor because AR1D1A/BAF250a (SWI1) subunit of the SWI/SNF chromatin-remodeling complex has emerged as recurrently mutated in a broad array of tumor types. But the crystal structure of SWI1 has not been solved as yet. Using docking and molecular dynamics, we predicted the DNA interaction pattern of human SWI1 ARID and made comparisons with the other two representative ARID family members, human Mrf-2 ARID and Drosophila Dri ARID. Dynamic results revealed that the N-terminal and loop L1 of SWI1 ARID bound with the DNA major groove, while the loop L2 and helix H6 bound with the minor groove. Moreover, it was found that SWI1 ARID bound with DNA apparently in a sequence-nonspecific manner. It was concluded that SWI1 ARID can form stable complex with sequence-nonspecific DNA segment comparing to Mrf-2 ARID/DNA and Dri ARID/DNA sequence-specific complexes.
文摘Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues. Methods cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment. Results In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22). Conclusion This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.