Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol inj...Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.展开更多
Disulfide bond formation protein A (DsbA) is one of the important helper proteins for folding in protein synthesis in vivo. In this study, purification of recombinant DsbA was investigated by examining four importan...Disulfide bond formation protein A (DsbA) is one of the important helper proteins for folding in protein synthesis in vivo. In this study, purification of recombinant DsbA was investigated by examining four important factors with Box-Behnken design method, a statistic-based design of experiments. The optimal operation conditions were obtained by adopting the effectiveness coefficient method on the multi-objective problem, which takes the protein recovery, purification efficiency and throughput of ion-exchange chromatography into account. After the optimization, protein recovery of 96.8% and purity higher than 95% DsbA was achieved, and the productivity was (377.9±1.7) mg soluble DsbA per liter broth. The purified protein was identified by peptide mass fingerprinting matching the record of gil2624856, a mutant of DsbA. The DsbA was preliminarily applied to the refolding of denatured lysozyme in vitro.展开更多
Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of ...Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
基金Heilongjiang Province North Medicine and Functional Food Characteristic Discipline Construction Project(No.2018-TSXK-02)Heilongjiang Provincial Department of Education Project(No.12511574)。
文摘Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.
基金Supported by the National Natural Science Foundation of China (21036005).
文摘Disulfide bond formation protein A (DsbA) is one of the important helper proteins for folding in protein synthesis in vivo. In this study, purification of recombinant DsbA was investigated by examining four important factors with Box-Behnken design method, a statistic-based design of experiments. The optimal operation conditions were obtained by adopting the effectiveness coefficient method on the multi-objective problem, which takes the protein recovery, purification efficiency and throughput of ion-exchange chromatography into account. After the optimization, protein recovery of 96.8% and purity higher than 95% DsbA was achieved, and the productivity was (377.9±1.7) mg soluble DsbA per liter broth. The purified protein was identified by peptide mass fingerprinting matching the record of gil2624856, a mutant of DsbA. The DsbA was preliminarily applied to the refolding of denatured lysozyme in vitro.
基金Anhui Universities Provincial Key Project of Natural Science Research(No.KJ2016SD60,KJ2015ZD41)。
文摘Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.