期刊文献+
共找到571篇文章
< 1 2 29 >
每页显示 20 50 100
Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin,northern South China Sea
1
作者 Yuanhang Liu Jinwei Gao +2 位作者 Wanli Chen Jiliang Wang Umair Khan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期25-39,共15页
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ... Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons. 展开更多
关键词 Post-rift normal faults fault throw Karst caves Corrosive fluids Pearl River Mouth basin south china sea
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
2
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan basin south china sea
下载PDF
Spatial distribution and inventory of natural gas hydrate in the Qiongdongnan Basin,northern South China Sea 被引量:1
3
作者 Zhongxian ZHAO Ning QIU +4 位作者 Zhen SUN Wen YAN Genyuan LONG Pengchun LI Haiteng ZHUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期729-739,共11页
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong... Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed. 展开更多
关键词 gas hydrate stability zone gas hydrate inventory Qiongdongnan basin south china sea
下载PDF
Formation of the Zengmu and Beikang Basins,and West Baram Line in the southwestern South China Sea margin
4
作者 Bing HAN Zhongxian ZHAO +7 位作者 Xiaofang WANG Zhen SUN Fucheng LI Benduo ZHU Yongjian YAO Liqiang LIU Tianyue PENG Genyuan LONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期592-611,共20页
The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debat... The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL. 展开更多
关键词 tectonic subsidence foreland basin West Baram Line Zengmu basin Beikang basin south china sea
下载PDF
Extensional structures of the Nan'an Basin in the rifting tip of the South China Sea: Implication for tectonic evolution of the southwestern continental margin
5
作者 Shi-Guo Wu Li Zhang +5 位作者 Zhen-Yu Lei Xing Qian Shuai-Bing Luo Xiang-Yang Lu Thomas Lüdmann Lei Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期128-140,共13页
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C... Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea. 展开更多
关键词 Sedimentary basin Seismic sequence RIFTinG Tectonic evolution south china sea
下载PDF
Evolutions of sedimentary facies and palaeoenvironment and their controls on the development of source rocks in continental margin basins:A case study from the Qiongdongnan Basin,South China Sea
6
作者 Kun Liu Peng Cheng +2 位作者 Cai-Wei Fan Peng Song Qiang-Tai Huang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2648-2663,共16页
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ... Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons. 展开更多
关键词 Sedimentary facies Palaeoenvironmental conditions EVOLUTIONS Source rocks the Qiongdongnan basin south china sea
下载PDF
Sedimentary evolution and control factors of the Rizhao Canyons in the Zhongjiannan Basin, western South China Sea
7
作者 Meijing Sun Yongjian Yao +5 位作者 Weidong Luo Jie Liu Xiaosan Hu Jiao Zhou Dong Ju Ziying Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第9期16-26,共11页
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in t... Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards. 展开更多
关键词 CANYON GEOMORPHOLOGY sedimentary evolution control factors Zhongjiannan basin western south china sea
下载PDF
The sedimentary record of the Sanshui Basin:Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea
8
作者 Zhe ZHANG Nianqiao FANG Zhen SUN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期532-549,共18页
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San... Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene. 展开更多
关键词 continental margin south china sea Sanshui basin Late Cretaceous tectonic transition
下载PDF
Discovery of pockmarks in the Zengmu Basin,southern South China Sea and the implication
9
作者 Yanlin WANG Guanghong TU +4 位作者 Junhui YU Pin YAN Yongbin JIN Changliang CHEN Jie LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期757-768,共12页
The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the... The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries. 展开更多
关键词 south china sea Zengmu basin dense pockmarks gas leaking substrate type
下载PDF
Genesis, evolution and reservoir identification of a Neogene submarine channel in the southwestern Qiongdongnan Basin, South China Sea
10
作者 Shuo Chen Donghui Jiang +4 位作者 Renhai Pu Yunwen Guan Xiaochuan Wu Tianyu Ji Chuang Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期57-78,共22页
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic... A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area. 展开更多
关键词 south china sea Qiongdongnan basin submarine channel channel evolution reservoir identification
下载PDF
Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau
11
作者 Ke Wang Shikui Zhai +1 位作者 Zenghui Yu Huaijing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期117-129,共13页
Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ... Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater. 展开更多
关键词 sediments from a drill core grouping analysis elements and Sr isotopes provenance and paleoenvironment uplift of the Tibetan Plateau and subsidence of the south china sea basin
下载PDF
Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin,northern South China Sea:Insights from borehole apatite fission-track thermochronology
12
作者 Xiao-yin Tang Shu-chun Yang Sheng-biao Hu 《China Geology》 CAS CSCD 2023年第3期429-442,共14页
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti... The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity. 展开更多
关键词 Oil and gas Hydrocarbon potential Apatite fission-track Tectonic-thermal evolution thermal history modeling Cooling event Heating event Marine geological survey engineering Erosion amount and rate Oil-gas exploration engineering Pearl River Mouth basin the south china sea
下载PDF
Gravity Flow on Slope and Abyssal Systems in the Qiongdongnan Basin,Northern South China Sea 被引量:19
13
作者 SU Ming XIE Xinong +5 位作者 LI Junliang JIANG Tao ZHANG Cheng HE Yunlong TIAN Shanshan ZHANG Cuimei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期243-253,共11页
The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity fl... The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity flow types are recognized: (1) turbidite channels with a truncational basal and concordant overburden relationship along the shelf edge and slope, comprising laterally-shifting and vertically-aggrading channel complexes; (2) slides with a spoon-shaped morphology slip steps on the shelf-break and generated from the deformation of poorly-consolidated and high water content sediments; (3) slumps are limited on the shelf slope, triggered either by an anomalous slope gradient or by fault activity; (4) turbidite sheet complexes (TSC) were ascribed to the basin-floor fan and slope fan origin, occasionally feeding the deep marine deposits by turbidity currents; (5) sediment waves occurring in the lower slope-basin floor, and covering an area of approximately 400 km2, were generated beneath currents flowing across the sea bed; and (6) the central canyon in the deep water area represents an exceptive type of gravity flow composed of an association of debris flow, turbidite channels, and TSC. It presents planar multisegment and vertical multiphase characteristics. Turbidite associated with good petrophysical property in the canyon could be treated as a potential exploration target in the QDNB. 展开更多
关键词 gravity flow slope and abyssal system Qiongdongnan basin south china sea
下载PDF
The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin,northern South China Sea 被引量:7
14
作者 Li Wenhao Zhang Zhihuan +2 位作者 Li Youchuan Liu Chao Fu Ning 《Petroleum Science》 SCIE CAS CSCD 2013年第2期161-170,共10页
Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but ... Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions, 展开更多
关键词 Hydrocarbon generation potential PALEOPRODUCTIVITY preservation conditions hydrodynamicconditions redox conditions Oligocene source rocks Qiongdongnan basin northern south china sea
下载PDF
Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea 被引量:16
15
作者 Pengcheng Wang Sanzhong Li +7 位作者 Yanhui Suo Lingli Guo Guangzeng Wang Gege Hui M.Santosh Ian D.Somerville Xianzhi Cao Yang Li 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1231-1251,共21页
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geody... The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS. 展开更多
关键词 Northern Cenozoic basin group south china sea NE-Striking fault Tectonic migration Pacific Plate Tethyan tectonic domain
下载PDF
Thermodynamic Modeling of Fluid-Bearing Natural Gas Inclusions for Geothermometer and Geobarometer of Overpressured Environments in Qiongdongnan Basin, South China Sea 被引量:7
16
作者 Chen Honghan Yao Shuzhen Wang Jiahao Li Chunquan Institute of Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2002年第3期240-247,共8页
It is a very difficult problem to directly determine fluid pressure duringhydrocarbon migration and accumulation in sedimentary basins. pVt modeling of coupling hydrocarbonfluid inclusion of its coeval aqueous fluid i... It is a very difficult problem to directly determine fluid pressure duringhydrocarbon migration and accumulation in sedimentary basins. pVt modeling of coupling hydrocarbonfluid inclusion of its coeval aqueous fluid inclusion provides a powerful tool for establishing therelationship of formation pressure evolution with time. Homogenization temperature of fluidinclusion can routinely be measured under microthermometric microscopy. Crushing technique has beenemployed to obtain the composition of fluid inclusions, and the commercial software VTFLINC easilyand rapidly completes the construction of p-t phase diagram. The minimum trapping pressure ofhydrocarbon fluid inclusion would be then determined in the p-t space. In this paper, three samplesof YC21-1-1 and YC21-1-4 wells at YC21-1 structural closure, Qiongdongnan basin, South China Sea,were selected for the pVt modeling practice, and the formation pressure coefficient (equals to fluidpressure/hydrostatic pressure) changing trend with time has primarily been established. Themodeling results also indicate that the reservoirs of Ling-shui and Yacheng formations in YC21-1structure are within a very high potential system and would have undergone a discharging of thermalfluids through top seal rupture, which depicts that there is a very high risk for natural gasexploration in this area. 展开更多
关键词 hydrocarbon fluid inclusion pVt modeling natural gas migration andaccumulation qiongdongnan basin south china sea
下载PDF
Tectonic Evolution of the Wanan Basin,Southwestern South China Sea 被引量:4
17
作者 Lü Caili ZHANG Gongcheng +1 位作者 YAO Yongjian WU Shiguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1120-1130,共11页
Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripp... Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripping techniques, we reconstructed the stratigraphic deposition and tectonic evolution histories of the basin. The basin formed from the Eocene and was generally in an extensional/transtensional state except for the Late Miocene local compressoin. The major basin extension ocurred in the Oligocene and Early Miocene (before -16.3 Ma) and thereafter uniform stretch in a smaller rate. The northern and middle basin extended intensely earlier during 38.6-23.3 Ma, while the southern basin was mainly stretched during 23.3-16.3 Ma. The basin formation and development are related to alternating sinistral to dextral strike-slip motions along the Wanan Fault Zone. The dominant dynamics may be caused by the seafloor spreading of the South China Sea and the its peripheral plate interaction. The basin tectonic evolution is divided into five phases: initial rifting, main rifting, rift-drift transition, structural inversion, and thermal subsidence. 展开更多
关键词 tectonic evolution stretch factor Wanan basin south china sea
下载PDF
Geochemical and microbial characters of sediment from the gas hydrate area in the Taixinan Basin, South China Sea 被引量:3
18
作者 GONG Junli SUN Xiaoming +2 位作者 LIN Zhiyong LU Hongfeng LU Yongjun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第9期52-64,共13页
The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial metho... The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial methods are combinedly used to characterize the sediments from a shallow piston Core DH_CL_11(gas hydrate free) and a gas hydrate-bearing drilling Core GMGS2-16 in this basin. Geochemical analyses indicate that anaerobic oxidation of methane(AOM) which is speculated to be linked to the ongoing gas hydrate dissociation is taking place in Core DH_CL_11 at deep. For Core GMGS2-16, AOM related to past episodes of methane seepage are suggested to dominate during its diagenetic process; while the relatively enriched δ18O bulk-sediment values indicate that methane involved in AOM might be released from the "episodic dissociation" of gas hydrate.Microbial analyses indicate that the predominant phyla in the bacterial communities are Firmicutes and Proteobacteria(Gammaproteobacteria and Epsilonproteobacteria), while the dominant taxa in the archaeal communities are Marine_Benthic_Group_B(MBGB), Halobacteria, Thermoplasmata, Methanobacteria,Methanomicrobia, Group C3 and MCG. Under parallel experimental operations, comparable dominant members(Firmicutes and MBGB) are found in the piston Core DH_CL_11 and the near surface layer of the long drilling Core GMGS2-16. Moreover, these members have been found predominant in other known gas hydrate bearing cores, and the dominant of MBGB has even been found significantly related to gas hydrate occurrence. Therefore,a high possibility for the existing of gas hydrate underlying Core DH_CL_11 is inferred, which is consistent with the geochemical analyses. In all, combined geochemical and microbiological analyses are more informative in characterizing sediments from gas hydrate-associated areas in the South China Sea. 展开更多
关键词 GEOCHEMISTRY Microbial community 16S rRNA Gas hydrate Taixinan basin south china sea
下载PDF
Seismic Characteristics and Development Patterns of Miocene Carbonate Platform in the Beikang Basin,Southern South China Sea 被引量:5
19
作者 YAN Wei ZHANG Guangxue +4 位作者 XIA Bin ZHANG Li YANG Zhen LEI Zhenyu YAO Huiqiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1651-1661,共11页
The Beikang Basin is located in the southern part of the South China Sea(SCS),which is one of most tectonically complex sea areas.It is a deepwater sedimentary basin that was mainly deposited during the Cenozoic era.O... The Beikang Basin is located in the southern part of the South China Sea(SCS),which is one of most tectonically complex sea areas.It is a deepwater sedimentary basin that was mainly deposited during the Cenozoic era.Owing to data restrictions,the research on carbonate platforms of this area is still in its infancy.High-resolution seismic data are analyzed to identify the Miocene carbonate platforms and reconstruct the architecture and growth history.The carbonate platforms of Beikang Basin began to develop in the Late Oligocene-Early Miocene,were extended in the Middle Miocene,and declined in the Late Miocene.The carbonate platform mainly developed during two periods:the Oligocene to the Early Miocene,and the Middle Miocene.The carbonate platforms that developed in the Middle Miocene were the most prosperous.The Middle Miocene carbonate platform in the Beikang Basin can be divided into three stages.In the first stage,the platforms had wide range which were thin.During the second stage,the platforms had a smaller range that was controlled by faults.In the third stage,the platforms were gradually submerged.The platform structure developed in the Middle Miocene at the Beikang Basin was controlled by the rate of rising/falling of the sea level and the carbonate growth rate.Based on an analysis of these changes and relationship,the platform can be divided into several patterns:retrogradation,submerged,aggradation,progradation,outward with up-stepping,outward with down-stepping,and down-stepping platforms.At the top of the carbonate platforms in the Beikang Basin a set of carbonate wings or mushrooms usually appeared.These were formed during a period of relative sea-level decline.It is believed that the Miocene carbonate platforms in the Beikang Basin are mainly controlled by tectonic and sedimentary environments,and are also affected by terrestrial detritus. 展开更多
关键词 carbonate platform controlling factors MIOCENE Beikang basin south china sea
下载PDF
Sediment Compaction and Pore Pressure Prediction in Deepwater Basin of the South China Sea: Estimation from ODP and IODP Drilling Well Data 被引量:2
20
作者 XIE Yangbing WU Tuoyu +4 位作者 SUN Jin ZHANG Hanyu WANG Jiliang GAO Jinwei CHEN Chuanxu 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期25-34,共10页
Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an im... Overpressure in deepwater basins not only causes serious soft sediment deformation, but also significantly affects the safety of drilling operations. Therefore, prediction of overpressure in sediments has become an important task in deepwater oil exploration and development. In this study, we analyze the drilling data from ODP Leg 184 Sites 1144, 1146, and 1148, and IODP Leg 349 Sites U1431, U1432, U1433, and U1435 to study the sediment compaction and controls in the northern South China Sea. Sedimentation rate, sediment content, distribution area, and buried depth are the factors that influence sediment compaction in the deepwater basin of the South China Sea. Among these factors, the sediment content is the most important. The fitted normal compacted coefficients and mudline porosity for an interval of 50 m shows disciplinary variation versus depth. The pore pressure predicted from different fitted results shows varying overpressure situations. The normal compaction trend from Site 1144 reflects the porosity variation trend in stable deposition basins in the northern South China Sea. The predicted pore pressure shows overpressure at Site 1144, which is attributed to compaction disequilibrium. Nevertheless, the mixed lithology column may influence the predicted overpressure at Site 1148, which is responsible for the confusing result. Above all, we find that sediment compaction should serve as a proxy for pore pressure in the deepwater basin of the South China Sea. 展开更多
关键词 normal compaction pore pressure PREDICTION DEEPWATER basin south china sea
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部