With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the con...TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.展开更多
Plate tectonics is driven by Earth-Moon barycentre shifts in the lower mantle. The eastern Canary Islands have geographic and geological conditions derived from the movements of the Central American plates. Some featu...Plate tectonics is driven by Earth-Moon barycentre shifts in the lower mantle. The eastern Canary Islands have geographic and geological conditions derived from the movements of the Central American plates. Some features of these islands are influenced by the rotation of the Earth from west to east in the evolution of the marine currents that surround them and the opening of the North Atlantic to the North Pole with little dependence of the glacial isostatic adjustment (GIA). In addition, their position with respect to the Tropic of Cancer and the African continent affect the north-south and east-west climatic change dynamics and their tectonic stability respectively. Dated lavas contain marine and aeolian deposits and some of the Pleistocene marine deposits indicate higher sea level in cooler circumstances, which is anomalous. Relating those marine deposits produced during the warmest interglacial, the last interglacial and the Holocene with their equivalents in the Southern Hemisphere, they reflect shifts in the barycentre. Thanks to Holocene radiocarbon, topographic and day length data and alkenone temperature, we describe a mechanism by which the oscillation of the Moon’s inclination (and declination) reaches extreme values (14ºand 34ºabout 4.9ºmore than current values) approximately every 1450 years. These values occur when there is a harmonic distortion in surface areas of the Earth’s crust as response associated with oscillations in the displacements of the barycentre of the Earth-Moon system. As the declination influences the movement of oceanic waters, there is also a relationship with the Bond Events of the North Atlantic, of unknown cause until now.展开更多
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification ...The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.展开更多
We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the...We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the elementary charge e, the Boltzmann constant k, the Planck constant h, and the light of speed in vacuum c. Given that the value of α is quite conserved but T is variable across CMBs, we propose that c changes with T and can be given by T, the present CMB temperature T<sub>0</sub> and the present light speed c<sub>0</sub>. As T is continuously decreasing, c is thus predicted to decrease at a rate of ~2.15 centimeters/second (cm/s) per year. Moreover, we provide a lot of evidence to support this finding. In conclusion, this study suggests a possibility of variable speed of light in vacuum.展开更多
The far side of the moon is a unique place for some scientific investigations.Chang'e 4 is a Chinese lunar far side landing exploration mission.Relay communication satellite,named as Queqiao,is an important and in...The far side of the moon is a unique place for some scientific investigations.Chang'e 4 is a Chinese lunar far side landing exploration mission.Relay communication satellite,named as Queqiao,is an important and innovative part of Chang'e 4 mission.It can provide relay communication to the lander and the rover operating on the lunar far side to maintain their contacts with Earth.It was launched by LM-4C launch vehicle at the Xichang Satellite Launch Center on May 21,2018.After five precise orbit controls and a journey of more than 20 days,Queqiao inserted into final halo mission orbit around Earth-moon libration point 2,located about 65,000 km beyond the moon.It is the world's first communication satellite operating in that orbit.Up to now,Queqiao worked very well and provided reliable,continuous communication relay service for the lander and the rover to ensure the mission success of Chang'e 4 exploration mission.Via Queqiao,the lander and the rover were controlled to work by ground stations and obtained a great amount of scientific data.The mission overview,operation orbit selection,relay communication system design and flight profile were introduced in this article.展开更多
This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restr...This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restricted three-body problem(CR3BP),four types of quasi-periodic orbits(two types around L1 and two types around L2)were formulated.Among them,one type of orbit around L2 realizes a considerably small geometry variation while ensuring visibility from the Earth if(and only if)the sail acceleration due to solar radiation pressure is approximately of a certain magnitude,which is much smaller than that assumed in several previous studies.This means that only small solar sails can remain in the vicinity of L2 for a long time without propellant consumption.The orbits designed in the linearized CR3BP can be translated into nonlinear CR3BP and high-fidelity ephemeris models without losing geometrical characteristics.In this study,new quasi-periodic orbits are formulated,and their characteristics are discussed.Furthermore,their extendibility to higher-fidelity dynamic models was verified using numerical examples.展开更多
Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary st...Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary studies.However,it is a challenge for existing Earth observation platforms to acquire this type of data rapidly on a global scale due to limitations in orbital altitude and field of view;thus development of an advanced platform for Earth observation is desirable.As a natural satellite of the Earth,placement of various sensors on the Moon could possibly facilitate comprehensive,continuous,and longterm observations of the Earth.This is a relatively new concept and the study is still at the preliminary stage with no actual Moon-based Earth observation data available at this time.To understand the characteristics of Moon-based microwave radiation,several physical factors that potentially influence microwave radiation imaging,e.g.,time zone correction,relative movement of the Earth-Moon,atmospheric radiative transfer,and the effect of the ionosphere,were examined.Based on comprehensive analysis of these factors,the Moon-based microwave brightness temperature images were simulated using spaceborne temperature data.The results show that time zone correction ensures that the simulation images may be obtained at Coordinated Universal Time(UTC)and that the relative movement of the Earth-Moon affects the positions of the nadir and Moon-based imaging.The effect of the atmosphere on Moon-based observation is dependent on various parameters,such as atmospheric pressure,temperature,humidity,water vapor,carbon dioxide,oxygen,the viewing zenith angle and microwave frequency.These factors have an effect on atmospheric transmittance and propagation of upward and downward radiation.When microwaves propagate through the ionosphere,the attenuation is related to frequency and viewing zenith angle.Based on initial studies,the simulation results suggest Moon-based microwave radiation imaging is realistic and viable.展开更多
Trajectory corrections for lunar flyby transfers to Sun–Earth/Moon libration point orbits(LPOs)with continuous thrusts are investigated using an ephemeris model.The lunar flyby transfer has special geometrical and dy...Trajectory corrections for lunar flyby transfers to Sun–Earth/Moon libration point orbits(LPOs)with continuous thrusts are investigated using an ephemeris model.The lunar flyby transfer has special geometrical and dynamical structures;therefore,its trajectory correction strategy is considerably different from that of previous studies and should be specifically designed.In this paper,we first propose a control strategy based on the backstepping technique with a dead-band scheme using an ephemeris model.The initial error caused by the launch time error is considered.Since the perturbed transfers significantly diverge from the reference transfers after the spacecraft passes by the Moon,we adopt two sets of control parameters in two portions before and after the lunar flyby,respectively.Subsequently,practical constraints owing to the navigation and propellant systems are introduced in the dynamical model of the trajectory correction.Using a prograde type 2 orbit as an example,numerical simulations show that our control strategy can efficiently address trajectory corrections for lunar flyby transfers with different practical constraints.In addition,we analyze the effects of the navigation intervals and dead-band scheme on trajectory corrections.Finally,trajectory corrections for different lunar flyby transfers are depicted and compared.展开更多
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270 and U2013206).
文摘TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.
文摘Plate tectonics is driven by Earth-Moon barycentre shifts in the lower mantle. The eastern Canary Islands have geographic and geological conditions derived from the movements of the Central American plates. Some features of these islands are influenced by the rotation of the Earth from west to east in the evolution of the marine currents that surround them and the opening of the North Atlantic to the North Pole with little dependence of the glacial isostatic adjustment (GIA). In addition, their position with respect to the Tropic of Cancer and the African continent affect the north-south and east-west climatic change dynamics and their tectonic stability respectively. Dated lavas contain marine and aeolian deposits and some of the Pleistocene marine deposits indicate higher sea level in cooler circumstances, which is anomalous. Relating those marine deposits produced during the warmest interglacial, the last interglacial and the Holocene with their equivalents in the Southern Hemisphere, they reflect shifts in the barycentre. Thanks to Holocene radiocarbon, topographic and day length data and alkenone temperature, we describe a mechanism by which the oscillation of the Moon’s inclination (and declination) reaches extreme values (14ºand 34ºabout 4.9ºmore than current values) approximately every 1450 years. These values occur when there is a harmonic distortion in surface areas of the Earth’s crust as response associated with oscillations in the displacements of the barycentre of the Earth-Moon system. As the declination influences the movement of oceanic waters, there is also a relationship with the Bond Events of the North Atlantic, of unknown cause until now.
基金supported by Foreign Expert Funding from China University of Geosciences Beijing
文摘The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere.The Earth-Moon system had many features in common during the birth stage.Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite.We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca.21 km depth boundary,underlain by meta-anorthosite(grossular + kyanite 4 quartz)down to 50-60 km in depth.The thickness of the mafic KREEP basalt in the lower crust,separating it from the underlying upper mantle is not well-constrained and might have been up to ca.100-200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density.The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca,Mg,Fe,Mn,P,K,and Cl which were exposed on the surface of the dry Earth.Around 190 million years after the solidification of the magma ocean, "ABEL bombardment" delivered volatiles including H_2O,CO_2,N_2 as well as silicate components through the addition of icy asteroids.This event continued for 200 Myr with subordinate bombardments until 3.9 Ga,preparing the Earth for the prebiotic chemical evolution and as the cradle of first life.Due to vigorous convection arising from high mantle potential temperatures,the primordial continents disintegrated and were dragged down to the deep mantle,marking the onset of Hadean plate tectonics.
文摘We previously revealed a quantitative relation by which the fine-structure constant α can be described by the temperature T of cosmic microwave background (CMB) with several other fundamental constants, including the elementary charge e, the Boltzmann constant k, the Planck constant h, and the light of speed in vacuum c. Given that the value of α is quite conserved but T is variable across CMBs, we propose that c changes with T and can be given by T, the present CMB temperature T<sub>0</sub> and the present light speed c<sub>0</sub>. As T is continuously decreasing, c is thus predicted to decrease at a rate of ~2.15 centimeters/second (cm/s) per year. Moreover, we provide a lot of evidence to support this finding. In conclusion, this study suggests a possibility of variable speed of light in vacuum.
文摘The far side of the moon is a unique place for some scientific investigations.Chang'e 4 is a Chinese lunar far side landing exploration mission.Relay communication satellite,named as Queqiao,is an important and innovative part of Chang'e 4 mission.It can provide relay communication to the lander and the rover operating on the lunar far side to maintain their contacts with Earth.It was launched by LM-4C launch vehicle at the Xichang Satellite Launch Center on May 21,2018.After five precise orbit controls and a journey of more than 20 days,Queqiao inserted into final halo mission orbit around Earth-moon libration point 2,located about 65,000 km beyond the moon.It is the world's first communication satellite operating in that orbit.Up to now,Queqiao worked very well and provided reliable,continuous communication relay service for the lander and the rover to ensure the mission success of Chang'e 4 exploration mission.Via Queqiao,the lander and the rover were controlled to work by ground stations and obtained a great amount of scientific data.The mission overview,operation orbit selection,relay communication system design and flight profile were introduced in this article.
文摘This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restricted three-body problem(CR3BP),four types of quasi-periodic orbits(two types around L1 and two types around L2)were formulated.Among them,one type of orbit around L2 realizes a considerably small geometry variation while ensuring visibility from the Earth if(and only if)the sail acceleration due to solar radiation pressure is approximately of a certain magnitude,which is much smaller than that assumed in several previous studies.This means that only small solar sails can remain in the vicinity of L2 for a long time without propellant consumption.The orbits designed in the linearized CR3BP can be translated into nonlinear CR3BP and high-fidelity ephemeris models without losing geometrical characteristics.In this study,new quasi-periodic orbits are formulated,and their characteristics are discussed.Furthermore,their extendibility to higher-fidelity dynamic models was verified using numerical examples.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41590855)the Key Research Project in Frontier Science of the Chinese Academy of Sciences(No.QYZDY-SSW-DQC026).
文摘Earth observation technologies are important for obtaining geospatial information on the Earth’s surface and are used widely in many disciplines,such as resource surveying,environmental monitoring,and evolutionary studies.However,it is a challenge for existing Earth observation platforms to acquire this type of data rapidly on a global scale due to limitations in orbital altitude and field of view;thus development of an advanced platform for Earth observation is desirable.As a natural satellite of the Earth,placement of various sensors on the Moon could possibly facilitate comprehensive,continuous,and longterm observations of the Earth.This is a relatively new concept and the study is still at the preliminary stage with no actual Moon-based Earth observation data available at this time.To understand the characteristics of Moon-based microwave radiation,several physical factors that potentially influence microwave radiation imaging,e.g.,time zone correction,relative movement of the Earth-Moon,atmospheric radiative transfer,and the effect of the ionosphere,were examined.Based on comprehensive analysis of these factors,the Moon-based microwave brightness temperature images were simulated using spaceborne temperature data.The results show that time zone correction ensures that the simulation images may be obtained at Coordinated Universal Time(UTC)and that the relative movement of the Earth-Moon affects the positions of the nadir and Moon-based imaging.The effect of the atmosphere on Moon-based observation is dependent on various parameters,such as atmospheric pressure,temperature,humidity,water vapor,carbon dioxide,oxygen,the viewing zenith angle and microwave frequency.These factors have an effect on atmospheric transmittance and propagation of upward and downward radiation.When microwaves propagate through the ionosphere,the attenuation is related to frequency and viewing zenith angle.Based on initial studies,the simulation results suggest Moon-based microwave radiation imaging is realistic and viable.
基金supported by the Canada Research Chair Program under Grant No.950-230883.
文摘Trajectory corrections for lunar flyby transfers to Sun–Earth/Moon libration point orbits(LPOs)with continuous thrusts are investigated using an ephemeris model.The lunar flyby transfer has special geometrical and dynamical structures;therefore,its trajectory correction strategy is considerably different from that of previous studies and should be specifically designed.In this paper,we first propose a control strategy based on the backstepping technique with a dead-band scheme using an ephemeris model.The initial error caused by the launch time error is considered.Since the perturbed transfers significantly diverge from the reference transfers after the spacecraft passes by the Moon,we adopt two sets of control parameters in two portions before and after the lunar flyby,respectively.Subsequently,practical constraints owing to the navigation and propellant systems are introduced in the dynamical model of the trajectory correction.Using a prograde type 2 orbit as an example,numerical simulations show that our control strategy can efficiently address trajectory corrections for lunar flyby transfers with different practical constraints.In addition,we analyze the effects of the navigation intervals and dead-band scheme on trajectory corrections.Finally,trajectory corrections for different lunar flyby transfers are depicted and compared.