It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affec...It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affecting the Indian summer monsoon(ISM)onset and associated rainfall variability.In the years when the prior winter BL is anomalously thick,anomalous sea surface cooling caused by intensified latent heat flux loss appears in the BoB starting in October and persists into the following year by positive cloud-SST feedback.During January-March,the vertical entrainment of warmer subsurface water induced by the anomalously thick BL acts to damp excessive cooling of the sea surface caused by atmospheric forcing and favors the development of deep atmospheric convection over the BoB.During March-May,the thinner mixed layer linked to the anomalously thick BL allows more shortwave radiation to penetrate below the mixed layer.This tends to maintain existing cold SST anomalies,advancing the onset of ISM and enhancing June ISM precipitation through an increase in the land-sea tropospheric thermal contrast.We also find that most of the coupled model intercomparison project phase 5(CMIP5)models fail to reproduce the observed relationship between June ISM rainfall and the prior winter BL thickness.This may be attributable to their difficulties in realistically simulating the winter BL in the BoB and ISM precipitation.The present results indicate that it is important to realistically capture the winter BL of the BoB in climate models for improving the simulation and prediction of ISM.展开更多
Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface tempera...Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900-2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni-o (La Ni-a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO-BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni-o (La Ni-a) event exhibiting significant positive (negative) SSTAs over the tropical central-eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni-o-related (La Ni-a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.展开更多
The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows ...The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).展开更多
The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon (BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature dat...The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon (BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature data from the Japan Metorology Agency (JMA). Results showed that the onset time of the BOBSM is highly related to the tropical Pacific upper ocean heat content (HC), especially in the key region of the western Pacific warm pool (WPWP), during the preceding winter and spring. When the HC anomalies in the WPWP are positive (negative), the onset of the BOBSM is usually early (late). Accompanied by the variation of the convection activity over the WPWP, mainly induced by the underlying ocean temperature anomalies, the Walker circulation becomes stronger or weaker. This enhances or weakens the westerly over the tropical Indian Ocean flowing into the BOB in the boreal spring, which is essential to BOBSM onset. The possible mechanism of influence of cyclonic/anti-cyclonic circulation over the northwestern tropical Pacific on BOBSM onset is also discussed.展开更多
During the summer monsoon season, strong coastal upwelling occurs along the southwest coast of India and at the southern tip of India, which cools the surface temperature of the waters around these regions. The summer...During the summer monsoon season, strong coastal upwelling occurs along the southwest coast of India and at the southern tip of India, which cools the surface temperature of the waters around these regions. The summer monsoon current carries the upwelled cold waters into the Bay of Bengal and forms the ‘cold pool of the Bay of Bengal', with its core south of Sri Lanka and over the southcentral Bay of Bengal. The present study focuses on the intrusion of these cold waters into the south of the Bay of Bengal, its interannual variability, and its association with the surface wind during the break phase of the summer monsoon, when strong westerly surface winds flow south of 10°N.The authors hypothesize that the enhanced cooling in the cold pool region during monsoon spells is associated with the strong westerly wind stress there during the break spells of the monsoon.Seven cases of long break monsoon spells that occurred during the nine years from 2001 to 2009 are analyzed, and the results confirm our hypothesis.展开更多
A sediment core(ABP24/05),collected at a water depth of 3520 m from the southeastern Bay of Bengal was studied to determine the change in chemical weathering during the last glacial to deglacial periods and the factor...A sediment core(ABP24/05),collected at a water depth of 3520 m from the southeastern Bay of Bengal was studied to determine the change in chemical weathering during the last glacial to deglacial periods and the factors of sedimentary environment which controlled earliest diagenetic changes in the sediment after its deposition.High ratios of K/Rb,Ti/Al and Zr/Rb during~45 to~18 cal kyr B.P.in the core sediments may be attributed to the stronger physical erosion and turbidity currents activity during this period.This might have brought a higher quantity of unaltered minerals to the study area.Low ratios of K/Rb,Zr/Rb,and Ti/Al and increase of SiO_(2)/TiO_(2),Rb/Al and Cs/Al from~18 cal kyr B.P.to present may be indicating an increase in the rate of chemical weathering during this period.The time of increased chemical weathering in the study area is consistent with deglaciation warming in the tropical Indian Ocean and strengthening of river runoff into the Andaman Sea.Climate change during the interglacial period by increased solar insolation thereby strengthened the summer monsoon which might have led to intensified chemical weathering in the source region since~18 cal kyr B.P.The low organic carbon(OC),high Mn/Al,Fe/Al and the Mn-oxides minerals precipitation indicate prevailing of oxic conditions during~11 cal kyr B.P.in the core sediments,which is contradictory to suboxic conditions developed in the deep ocean sediments in the western Bay of Bengal and the equatorial Indian Ocean.The low terrigenous influx and export of less OC to the bottom sediments might have created a favorable condition for the formation of Mn-oxides in the study area during Holocene.展开更多
Our study aims to understand the variability of oceanic mesoscale eddies during contrasting(2009 and 2013)monsoon seasons and the role of such eddies on atmospheric deep convection over the Bay of Bengal(BoB).Oceanic ...Our study aims to understand the variability of oceanic mesoscale eddies during contrasting(2009 and 2013)monsoon seasons and the role of such eddies on atmospheric deep convection over the Bay of Bengal(BoB).Oceanic eddies are detected and tracked using sea surface height anomalies(SSHA),by employing the Okubo-Weiss parameter eddy detection method.Significant differences in the SSHA and eddy activity are evident during the contrasting monsoon years.During the year 2013(2009),anticyclonic eddies are predominant(absent)in the eastern BoB and longer(shorter)lifespans of cyclonic eddies are observed in the northern and western BoB.Analysis of time-longitude SSHA and zonal wind stress reveals the presence of strong(weak)equatorial downwelling Kelvin waves,coastal Kelvin waves and Rossby waves in the BoB during 2013(2009)Indian summer monsoon(ISM).The variability of eddies in the BoB during contrasting monsoons is attributed by the remote forcing effect of planetary scale waves.Our study is extended to investigate the associated atmospheric deep convection over the regions of cyclonic and anticyclonic eddies.Lag-correlations demonstrates that SSHA leads the outgoing longwave radiation by four days over anticyclonic eddy regions.Findings from the present study provide new insight into the internal dynamics of the ocean.展开更多
Based on best-track,outgoing longwave radiation,sea surface temperature,and reanalysis data during 1979-2018,statistical and composite analyses were performed to investigate characteristics of the southwesterly water ...Based on best-track,outgoing longwave radiation,sea surface temperature,and reanalysis data during 1979-2018,statistical and composite analyses were performed to investigate characteristics of the southwesterly water vapor transport(WVT)induced by Bay of Bengal(BoB)tropical cyclones(TCs)during the South Asian summer monsoon(SASM)transition period.The results show that the BoB TCs mainly occur several days before/after the date of SASM onset(retreat)in May(October-November),thereby imposing an important impact on southwesterly WVT to China in those two periods.The WVT is significant in the middle and lower troposphere during the bimodal peak periods of BoB TCs,with large values over the east-central BoB,southeastern Tibetan Plateau,and Southwest and South China.The WVT is located more northward at 500 hPa than at 700 hPa,reaching close to 35°N and covering the southeastern Tibetan Plateau owing to weakening of the plateau’s blocking effect at upper levels.The BoB TCs mainly increase the northward and eastward WVT anomalies compared to the climatological mean.Furthermore,the large southerly WVT anomalies are located in the lower troposphere in low-latitude areas,while the large westerly WVT anomalies appear mainly in the middle troposphere in high-latitude areas.This indicates an enhanced WVT channel where the southwesterly moisture jet first climbs northwards to the southeastern Tibetan Plateau and then turns eastwards to East China under the influence of the BoB TCs.Besides,the southwesterly WVT during the TC period in May is stronger and more widespread than that in October-November,being about twice the latter in value.However,their maximum contributions to the climatological average do not differ much,with maximums of 12%and19%occurring in Southwest China during the bimodal periods,respectively,implying an important role played by the BoB TCs in the WVT.展开更多
The high quality dataset from the SCS (South China Sea) Monsoon Experiment and 40-year NCEP/NCAR reanalysis data are used to investigate the large-scale features and abrupt change in meteorological elements during the...The high quality dataset from the SCS (South China Sea) Monsoon Experiment and 40-year NCEP/NCAR reanalysis data are used to investigate the large-scale features and abrupt change in meteorological elements during the onset of the SCS summer monsoon.It is found that the SCS summer monsoon establishment is characterized by the South Asian high migrating swiftly from the eastern side of Philippines to the northern part of Indo-China Peninsula and the enhancement of the Bay of Bengal trough and equatorial westerly over the Indian Ocean associated with the equatorial westerly expanding towards northeastward,and followed by the mid-low latitude interaction and continuous retreat eastward of the western Pacific subtropical high.Further study shows that the meridional temperature difference and the zonal wind vertical shear over the Asian lower latitudes also experience abrupt change during the onset of the SCS summer monsoon. Numerical experiments reveal that the Indian Peninsula acts as a critical role for the enhancement of the Bay of Bengal trough with a cyclonic difference circulation excited to the east side of the peninsula through ground sensible heating in such a way that the SCS summer monsoon occurs prior to the Indian summer monsoon.展开更多
利用合成分析、相关分析等方法,对孟加拉湾东部夏季风(Eastern Bay of Bengal Summer Monsoon,简称EBOBSM)爆发日期进行定义,并在此基础上研究其年际变化特征。规定3天滑动平均的850hPa纬向风在90°E^100°E,7.5°N^12.5...利用合成分析、相关分析等方法,对孟加拉湾东部夏季风(Eastern Bay of Bengal Summer Monsoon,简称EBOBSM)爆发日期进行定义,并在此基础上研究其年际变化特征。规定3天滑动平均的850hPa纬向风在90°E^100°E,7.5°N^12.5°N的范围平均下,从平均值大于2m/s的当天开始,连续15天均值都大于0,且15天纬向风平均值大于2m/s,则该日期为EBOBSM夏季风爆发日期,1979—2008年气候平均爆发日期为5月5日。EBOBSM爆发时间的年际变化特征明显,EBOBSM爆发偏早(晚)年的前期冬季,赤道中东太平洋海温异常偏低(高),对应厄尔尼诺/南方涛动(ENSO)冷(暖)事件和南极涛动正(负)位相,这种位相分布自北半球冬季至春季由强变弱。澳大利亚及西南印度洋受异常气旋(反气旋)式环流控制,并一直持续至春季3、4月份,使得早年与晚年位势高度异常的差异自南向北表现为低-高-低的类波列分布,并伴随气旋-反气旋-气旋式波动环流。南极涛动异常信号通过经向异常波动,自南印度洋中高纬度传播至孟加拉湾。偏早年热带地区的气旋式环流使得索马里越赤道气流加强,更多的水汽及热量随赤道西风被携带至孟加拉湾,使得当地降水充沛,对流活跃,较易激发季风爆发,偏晚年情况相反。展开更多
The orbital-scale variability of the Indian summer monsoon(ISM)has been influenced by multiple factors,such as atmospheric CO_(2)concentration,global ice volume,and insolation.Proxies for weathering activity and paleo...The orbital-scale variability of the Indian summer monsoon(ISM)has been influenced by multiple factors,such as atmospheric CO_(2)concentration,global ice volume,and insolation.Proxies for weathering activity and paleo-productivity provide potential insights into the driving forces of its variability.We documented multi-proxy data at IODP Site U1445,located in the Mahanadi Basin of the northwestern Bay of Bengal,to find out ISM variability over the last 200 ka.The proxy records,such as Nd/Sr isotopes of detrital particles,clay mineral compositions of the fine-grained sediments,biogenic opal and CaCO_(3),organic carbon contents,and carbon isotopes of organic matter,represent sediment sources,weathering patterns,and paleo-productivity related to the ISM variability.Detrital Nd/Sr isotope data and clay mineral compositions suggest that the sediments at Site U1445 originated mainly from the Ganges,Brahmaputra,and Meghna rivers without dramatic provenance change between the glacial and interglacial periods.The weathering activity inferred from clay mineral compositions and the paleo-productivity shift reconstructed by biogenic opal and CaCO_(3)contents suggest that the land-sea interactions were closely linked to the ISM precipitation between the glacial and interglacial periods.High precipitation by the strong ISM resulted in intense chemical weathering and dominant biogenic opal deposition during the interglacial periods.In contrast,low precipitation by the weak ISM led to reduced chemical weathering and predominant CaCO_(3)deposition during the glacial periods.Further,the ISM variability driving the land-sea interactions in the Mahanadi Basin was modulated by the Indonesian throughflow(ITF).Our study emphasizes the role of low-latitude forcing of climatic changes in the strong relationship between the ISM and ITF over orbital periods,providing a base for future investigations.展开更多
基金The Postgraduate Research and Practice Innovation Program of Jiangsu Province under contract No.KYCX22_0587the Fundamental Research Funds for the Central Universities under contract No.B230205012.
文摘It is found that the winter(December-February)barrier layer(BL)in the Bay of Bengal(BoB)acts as a dynamical thermostat,modulating the subsequent summer BoB sea surface temperature(SST)variability and potentially affecting the Indian summer monsoon(ISM)onset and associated rainfall variability.In the years when the prior winter BL is anomalously thick,anomalous sea surface cooling caused by intensified latent heat flux loss appears in the BoB starting in October and persists into the following year by positive cloud-SST feedback.During January-March,the vertical entrainment of warmer subsurface water induced by the anomalously thick BL acts to damp excessive cooling of the sea surface caused by atmospheric forcing and favors the development of deep atmospheric convection over the BoB.During March-May,the thinner mixed layer linked to the anomalously thick BL allows more shortwave radiation to penetrate below the mixed layer.This tends to maintain existing cold SST anomalies,advancing the onset of ISM and enhancing June ISM precipitation through an increase in the land-sea tropospheric thermal contrast.We also find that most of the coupled model intercomparison project phase 5(CMIP5)models fail to reproduce the observed relationship between June ISM rainfall and the prior winter BL thickness.This may be attributable to their difficulties in realistically simulating the winter BL in the BoB and ISM precipitation.The present results indicate that it is important to realistically capture the winter BL of the BoB in climate models for improving the simulation and prediction of ISM.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1506004)the Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA19070404 and QYZDY-SSW-DQC018)+3 种基金the Natural Science Foundation of China (Grant Nos. 41705065, 41876020 and 41730963)the SOA Program on Global Change and Air-Sea Interactions (Grant No. GASI-IPOVAI-03)the Foundation of Sichuan Education Department (Grant No. 18ZB0122)the Open Foundation of the Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (Grant No. PAEKL-2017-Y6)
文摘Interannual variations of the Bay of Bengal summer monsoon (BOBSM) onset in association with El Ni-o-Southern Oscillation (ENSO) are reexamined using NCEP1, JRA-55 and ERA20C atmospheric and Hadley sea surface temperature (SST) reanalysis datasets over the period 1900-2017. Decadal changes exist in the dependence of the BOBSM onset on ENSO, varying with the Pacific Decadal Oscillation (PDO). A higher correlation between the BOBSM onset and ENSO arises during the warm PDO epochs, with distinct late (early) onsets following El Ni-o (La Ni-a) events. In contrast, less significant correlations occur during the cold PDO epochs. The mechanism for the PDO modulating the ENSO-BOBSM onset relationship is through the variations in SST anomaly (SSTA) patterns. During the warm PDO epochs, the superimpositions of the PDO-related and ENSO-related SSTAs lead to the SSTA distribution of an El Ni-o (La Ni-a) event exhibiting significant positive (negative) SSTAs over the tropical central-eastern Pacific and Indian Ocean along with negative (positive) SSTAs, especially over the tropical western Pacific (TWP), forming a strong zonal interoceanic SSTA gradient between the TWP and tropical Indian Ocean. Significant anomalous lower tropospheric easterlies (westerlies) together with upper-tropospheric westerlies (easterlies) are thus induced over the BOB, favoring an abnormally late (early) BOBSM onset. During the cold PDO epochs, however, the superimpositions of PDO-related SSTAs with El Ni-o-related (La Ni-a-related) SSTAs lead to insignificant SSTAs over the TWP and a weak zonal SSTA gradient, without distinct circulation anomalies over the BOB favoring early or late BOBSM onsets.
基金supported by the National Basic Research Program of China(973Program:2012CB955604)National Natural Science Foundation of China(No.40975038,40830106)the CMA Program(GYHY200906008)
文摘The influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index. The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May. The two peaks correspond to the withdrawal and onset of the BoB summer monsoon, respectively. The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency, indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency. Of the four environmental variables (i.e., low-level vorticity, mid-level relative humidity, potential intensity, and vertical wind shear) that enter into the GP index, the potential intensity makes the largest contribution to the bimodal distribution, followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal. The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humid-ity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet wester-lies) dominates the BoB in late spring (autumn).
基金supported by the National Basic Research Program (973 Program)(Grant No. 2012CB417403)the National Natural Science Foundation of China (Grant Nos. 40890151,and 41106016)
文摘The influence of the tropical Indo-Pacific Ocean heat content on the onset of the Bay of Bengal summer monsoon (BOBSM) onset was investigated using atmospheric data from the NCEP and ocean subsurface temperature data from the Japan Metorology Agency (JMA). Results showed that the onset time of the BOBSM is highly related to the tropical Pacific upper ocean heat content (HC), especially in the key region of the western Pacific warm pool (WPWP), during the preceding winter and spring. When the HC anomalies in the WPWP are positive (negative), the onset of the BOBSM is usually early (late). Accompanied by the variation of the convection activity over the WPWP, mainly induced by the underlying ocean temperature anomalies, the Walker circulation becomes stronger or weaker. This enhances or weakens the westerly over the tropical Indian Ocean flowing into the BOB in the boreal spring, which is essential to BOBSM onset. The possible mechanism of influence of cyclonic/anti-cyclonic circulation over the northwestern tropical Pacific on BOBSM onset is also discussed.
基金a donation from Trond Mohn,c/o Frank Mohn AS,for financing part of the workGrants from the Nansen Scientific Society,EU-FP7[project number 295092],INDOMARECLIM
文摘During the summer monsoon season, strong coastal upwelling occurs along the southwest coast of India and at the southern tip of India, which cools the surface temperature of the waters around these regions. The summer monsoon current carries the upwelled cold waters into the Bay of Bengal and forms the ‘cold pool of the Bay of Bengal', with its core south of Sri Lanka and over the southcentral Bay of Bengal. The present study focuses on the intrusion of these cold waters into the south of the Bay of Bengal, its interannual variability, and its association with the surface wind during the break phase of the summer monsoon, when strong westerly surface winds flow south of 10°N.The authors hypothesize that the enhanced cooling in the cold pool region during monsoon spells is associated with the strong westerly wind stress there during the break spells of the monsoon.Seven cases of long break monsoon spells that occurred during the nine years from 2001 to 2009 are analyzed, and the results confirm our hypothesis.
基金This work was undertaken as part of the EEZ mapping program funded by MoES(Grant No.MoES/EC/EEZ/32/2012-PCII).This is NCPOR contribution J-59/2020-21#.
文摘A sediment core(ABP24/05),collected at a water depth of 3520 m from the southeastern Bay of Bengal was studied to determine the change in chemical weathering during the last glacial to deglacial periods and the factors of sedimentary environment which controlled earliest diagenetic changes in the sediment after its deposition.High ratios of K/Rb,Ti/Al and Zr/Rb during~45 to~18 cal kyr B.P.in the core sediments may be attributed to the stronger physical erosion and turbidity currents activity during this period.This might have brought a higher quantity of unaltered minerals to the study area.Low ratios of K/Rb,Zr/Rb,and Ti/Al and increase of SiO_(2)/TiO_(2),Rb/Al and Cs/Al from~18 cal kyr B.P.to present may be indicating an increase in the rate of chemical weathering during this period.The time of increased chemical weathering in the study area is consistent with deglaciation warming in the tropical Indian Ocean and strengthening of river runoff into the Andaman Sea.Climate change during the interglacial period by increased solar insolation thereby strengthened the summer monsoon which might have led to intensified chemical weathering in the source region since~18 cal kyr B.P.The low organic carbon(OC),high Mn/Al,Fe/Al and the Mn-oxides minerals precipitation indicate prevailing of oxic conditions during~11 cal kyr B.P.in the core sediments,which is contradictory to suboxic conditions developed in the deep ocean sediments in the western Bay of Bengal and the equatorial Indian Ocean.The low terrigenous influx and export of less OC to the bottom sediments might have created a favorable condition for the formation of Mn-oxides in the study area during Holocene.
基金Naresh Krishna Vissa would like to acknowledge the Min-istry of Earth Sciences,Government of India for providing research grant(MoES/36/OOIS/Extra/46/2016).
文摘Our study aims to understand the variability of oceanic mesoscale eddies during contrasting(2009 and 2013)monsoon seasons and the role of such eddies on atmospheric deep convection over the Bay of Bengal(BoB).Oceanic eddies are detected and tracked using sea surface height anomalies(SSHA),by employing the Okubo-Weiss parameter eddy detection method.Significant differences in the SSHA and eddy activity are evident during the contrasting monsoon years.During the year 2013(2009),anticyclonic eddies are predominant(absent)in the eastern BoB and longer(shorter)lifespans of cyclonic eddies are observed in the northern and western BoB.Analysis of time-longitude SSHA and zonal wind stress reveals the presence of strong(weak)equatorial downwelling Kelvin waves,coastal Kelvin waves and Rossby waves in the BoB during 2013(2009)Indian summer monsoon(ISM).The variability of eddies in the BoB during contrasting monsoons is attributed by the remote forcing effect of planetary scale waves.Our study is extended to investigate the associated atmospheric deep convection over the regions of cyclonic and anticyclonic eddies.Lag-correlations demonstrates that SSHA leads the outgoing longwave radiation by four days over anticyclonic eddy regions.Findings from the present study provide new insight into the internal dynamics of the ocean.
基金Supported by the National Natural Science Foundation of China(41930972,41775055,51778617,and 42005141)Science and Technology Development Funds of the Chinese Academy of Meteorological Sciences(2020KJ019)。
文摘Based on best-track,outgoing longwave radiation,sea surface temperature,and reanalysis data during 1979-2018,statistical and composite analyses were performed to investigate characteristics of the southwesterly water vapor transport(WVT)induced by Bay of Bengal(BoB)tropical cyclones(TCs)during the South Asian summer monsoon(SASM)transition period.The results show that the BoB TCs mainly occur several days before/after the date of SASM onset(retreat)in May(October-November),thereby imposing an important impact on southwesterly WVT to China in those two periods.The WVT is significant in the middle and lower troposphere during the bimodal peak periods of BoB TCs,with large values over the east-central BoB,southeastern Tibetan Plateau,and Southwest and South China.The WVT is located more northward at 500 hPa than at 700 hPa,reaching close to 35°N and covering the southeastern Tibetan Plateau owing to weakening of the plateau’s blocking effect at upper levels.The BoB TCs mainly increase the northward and eastward WVT anomalies compared to the climatological mean.Furthermore,the large southerly WVT anomalies are located in the lower troposphere in low-latitude areas,while the large westerly WVT anomalies appear mainly in the middle troposphere in high-latitude areas.This indicates an enhanced WVT channel where the southwesterly moisture jet first climbs northwards to the southeastern Tibetan Plateau and then turns eastwards to East China under the influence of the BoB TCs.Besides,the southwesterly WVT during the TC period in May is stronger and more widespread than that in October-November,being about twice the latter in value.However,their maximum contributions to the climatological average do not differ much,with maximums of 12%and19%occurring in Southwest China during the bimodal periods,respectively,implying an important role played by the BoB TCs in the WVT.
基金National Climbing Program A"SCSMEX"National Key Program for Developing Basic Sciences (G1998040900(Ⅰ))
文摘The high quality dataset from the SCS (South China Sea) Monsoon Experiment and 40-year NCEP/NCAR reanalysis data are used to investigate the large-scale features and abrupt change in meteorological elements during the onset of the SCS summer monsoon.It is found that the SCS summer monsoon establishment is characterized by the South Asian high migrating swiftly from the eastern side of Philippines to the northern part of Indo-China Peninsula and the enhancement of the Bay of Bengal trough and equatorial westerly over the Indian Ocean associated with the equatorial westerly expanding towards northeastward,and followed by the mid-low latitude interaction and continuous retreat eastward of the western Pacific subtropical high.Further study shows that the meridional temperature difference and the zonal wind vertical shear over the Asian lower latitudes also experience abrupt change during the onset of the SCS summer monsoon. Numerical experiments reveal that the Indian Peninsula acts as a critical role for the enhancement of the Bay of Bengal trough with a cyclonic difference circulation excited to the east side of the peninsula through ground sensible heating in such a way that the SCS summer monsoon occurs prior to the Indian summer monsoon.
文摘利用合成分析、相关分析等方法,对孟加拉湾东部夏季风(Eastern Bay of Bengal Summer Monsoon,简称EBOBSM)爆发日期进行定义,并在此基础上研究其年际变化特征。规定3天滑动平均的850hPa纬向风在90°E^100°E,7.5°N^12.5°N的范围平均下,从平均值大于2m/s的当天开始,连续15天均值都大于0,且15天纬向风平均值大于2m/s,则该日期为EBOBSM夏季风爆发日期,1979—2008年气候平均爆发日期为5月5日。EBOBSM爆发时间的年际变化特征明显,EBOBSM爆发偏早(晚)年的前期冬季,赤道中东太平洋海温异常偏低(高),对应厄尔尼诺/南方涛动(ENSO)冷(暖)事件和南极涛动正(负)位相,这种位相分布自北半球冬季至春季由强变弱。澳大利亚及西南印度洋受异常气旋(反气旋)式环流控制,并一直持续至春季3、4月份,使得早年与晚年位势高度异常的差异自南向北表现为低-高-低的类波列分布,并伴随气旋-反气旋-气旋式波动环流。南极涛动异常信号通过经向异常波动,自南印度洋中高纬度传播至孟加拉湾。偏早年热带地区的气旋式环流使得索马里越赤道气流加强,更多的水汽及热量随赤道西风被携带至孟加拉湾,使得当地降水充沛,对流活跃,较易激发季风爆发,偏晚年情况相反。
基金the National Research Foundation of Korea(2019R1A2C1007701,2022R1A2B5B01001811)the KIOST post-doc fellowship(PEA0023).
文摘The orbital-scale variability of the Indian summer monsoon(ISM)has been influenced by multiple factors,such as atmospheric CO_(2)concentration,global ice volume,and insolation.Proxies for weathering activity and paleo-productivity provide potential insights into the driving forces of its variability.We documented multi-proxy data at IODP Site U1445,located in the Mahanadi Basin of the northwestern Bay of Bengal,to find out ISM variability over the last 200 ka.The proxy records,such as Nd/Sr isotopes of detrital particles,clay mineral compositions of the fine-grained sediments,biogenic opal and CaCO_(3),organic carbon contents,and carbon isotopes of organic matter,represent sediment sources,weathering patterns,and paleo-productivity related to the ISM variability.Detrital Nd/Sr isotope data and clay mineral compositions suggest that the sediments at Site U1445 originated mainly from the Ganges,Brahmaputra,and Meghna rivers without dramatic provenance change between the glacial and interglacial periods.The weathering activity inferred from clay mineral compositions and the paleo-productivity shift reconstructed by biogenic opal and CaCO_(3)contents suggest that the land-sea interactions were closely linked to the ISM precipitation between the glacial and interglacial periods.High precipitation by the strong ISM resulted in intense chemical weathering and dominant biogenic opal deposition during the interglacial periods.In contrast,low precipitation by the weak ISM led to reduced chemical weathering and predominant CaCO_(3)deposition during the glacial periods.Further,the ISM variability driving the land-sea interactions in the Mahanadi Basin was modulated by the Indonesian throughflow(ITF).Our study emphasizes the role of low-latitude forcing of climatic changes in the strong relationship between the ISM and ITF over orbital periods,providing a base for future investigations.