Extracting geometric data of landmarks from fluoroscopic images plays an important role in camera calibration process of a fluoroscopic-image-based surgical navigation system. Connected components labeling is the esse...Extracting geometric data of landmarks from fluoroscopic images plays an important role in camera calibration process of a fluoroscopic-image-based surgical navigation system. Connected components labeling is the essential technique for the extraction. A new fast connected components labeling algorithm was presented. The definition of upward concave set was introduced to explain the algorithm. Feasibility and efficiency of the algorithm were verified with experiments. This algorithm performs well in labeling non-upward concave set connected components and applies to landmarks labeling well. Moreover, the proposed algorithm possesses a desirable characteristic that will facilitate the subsequent processing of fluoroscopic images.展开更多
A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labe...A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.展开更多
An analysis and computation method of connectivity between components that based on logical subtyping is first presented, the concepts of virtual interface and real interface, and quantitative analysis and computation...An analysis and computation method of connectivity between components that based on logical subtyping is first presented, the concepts of virtual interface and real interface, and quantitative analysis and computation formula of connectivity between interfaces are also introduced, that based on a extendable software architecture specification language model. We provide a new idea for solving the problem of connection between reuse components.展开更多
Let g and h be two transcendental entire functions. Suppose that the Fatou set F(goh) contains multiply connected components. In this article, we will consider the growth of the functions g and h.
Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of th...Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of this study was to analyze alterations in brain network functional connectivity(FC) in upper-limb amputees(ULAs). This observational study included 40 ULAs and 40 healthy control subjects;all participants underwent resting-state functional magnetic resonance imaging. Changes in intra-and inter-network FC in ULAs were quantified using independent component analysis and brain network FC analysis. We also analyzed the correlation between FC and clinical manifestations, such as pain. We identified 11 independent components using independent component analysis from all subjects. In ULAs, intra-network FC was decreased in the left precuneus(precuneus gyrus) within the dorsal attention network and left precentral(precentral gyrus) within the auditory network;but increased in the left Parietal_Inf(inferior parietal, but supramarginal and angular gyri) within the ventral sensorimotor network, right Cerebelum_Crus2(crus Ⅱ of cerebellum) and left Temporal_Mid(middle temporal gyrus) within the ventral attention network, and left Rolandic_Oper(rolandic operculum) within the auditory network. ULAs also showed decreased inter-network FCs between the dorsal sensorimotor network and ventral sensorimotor network, the dorsal sensorimotor network and right frontoparietal network, and the dorsal sensorimotor network and dorsal attention network. Correlation analyses revealed negative correlations between inter-network FC changes and residual limb pain and phantom limb pain scores, but positive correlations between inter-network FC changes and daily activity hours of stump limb. These results show that post-amputation plasticity in ULAs is not restricted to local remapping;rather, it also occurs at a network level across several cortical regions. This observation provides additional insights into the plasticity of brain networks after upper-limb amputation, and could contribute to identification of the mechanisms underlying post-amputation pain.展开更多
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris...Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.展开更多
To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especiall...To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especially when scaling to extensive railway networks.Moreover,the unpredictable and intricate nature of defect edge shapes further complicates detection efforts.Addressing these challenges,this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network(UPerNet)tailored for rail surface defect detection.Notably,the Swin Transformer Tiny version(Swin-T)network,underpinned by the Transformer architecture,is employed for adept feature extraction.This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference.The model’s efficiency is further amplified by the windowbased self-attention,which minimizes the model’s parameter count.We implement the cross-GPU synchronized batch normalization(SyncBN)for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships.Experimental evaluations underscore the efficacy of our improved UPerNet,with results demonstrating Pixel Accuracy(PA)scores of 91.39%and 93.35%,Intersection over Union(IoU)values of 83.69%and 87.58%,Dice Coefficients of 91.12%and 93.38%,and Precision metrics of 90.85%and 93.41%across two distinct datasets.An increment in detection accuracy was discernible.For further practical applicability,we deploy semantic segmentation of rail surface defects,leveraging connected component processing techniques to distinguish varied defects within the same frame.By computing the actual defect length and area,our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.展开更多
Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among ...Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among them, multidimensional histogram methods have been investigated but their implementation stays difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the number of components in image) images or multidimensional images in an unsupervised way using a fuzzy neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histo- gram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondary arbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity be- tween pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D and 2-D ones, leads to better segmentation results. Various images were segmented;the evaluation of the quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the classification method k-means gives better results. It thus highlights the relevance of our approach, which can be used for solving many problems of segmentation.展开更多
Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) a...Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) and union-find sets has been put forward.The new algorithm uses RLE as the basic processing unit,converts the label merging of connected RLE into sets grouping in accordance with equivalence relation,and uses the union-find sets which is the realization method of sets grouping to solve the label merging of connected RLE.And the label merging procedure has been optimized:the union operation has been modified by adding the "weighted rule" to avoid getting a degenerated-tree,and the "path compression" has been adopted when implementing the find operation,then the time complexity of label merging is O(nα(n)).The experiments show that the new algorithm can label the connected components of any shapes very quickly and exactly,save more memory,and facilitate the subsequent image analysis.展开更多
An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notifica...An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.展开更多
This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite eleme...This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.展开更多
Based on the in-depth analysis of the interaction patterns between the components of software system in architecture, this paper illustrates that the association among them is complex and usually changeable during the...Based on the in-depth analysis of the interaction patterns between the components of software system in architecture, this paper illustrates that the association among them is complex and usually changeable during the running period. So we assume the interactions between two adjacency components are grouped into a single connector, which can be used to analyze the influence of components assembly on the survivability for software architecture. The survivability of the components assembly is mapped into the connectivity of graph model. We also bring forward a simplicity method to calculate and quantify the survivability of architecture that could provide a more usable model for designers to evaluate the architecture.展开更多
In 2012, Hsu et al. generalized the classical connectivity of graph G and introduced the concept of g-component connectivity CK<sub>g</sub> (G) to measure the fault tolerance of networks. In this pape...In 2012, Hsu et al. generalized the classical connectivity of graph G and introduced the concept of g-component connectivity CK<sub>g</sub> (G) to measure the fault tolerance of networks. In this paper, we determine the g-component connectivity of some graphs, such as fan graph, helm graph, crown graph, Gear graph and the Mycielskian graph of star graph and complete bipartite graph.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func...Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.展开更多
This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the hig...This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.展开更多
Let G be a k-connected graph, and T be a subset of V(G). If G-T is not connected,then T is said to be a cut-set of G. A k-cut-set T of G is a cut-set of G with │T│=k. Let T bea k-cut-set of a k-connected graph G. ...Let G be a k-connected graph, and T be a subset of V(G). If G-T is not connected,then T is said to be a cut-set of G. A k-cut-set T of G is a cut-set of G with │T│=k. Let T bea k-cut-set of a k-connected graph G. If G - T can be partitioned into subgraphs G1 and G2such that │G1│≥ 2, │G2│ 〉 2, then we call T a nontrivial k-cut-set of G. Suppose that G is a(k-1)-connected graph without nontrivial (k - 1)-cut-set. Then we call G a quasi k-connectedgraph. In this paper, we prove that for any integer k ≥ 5, if G is a k-connected graph withoutK4-, then every vertex of G is incident with an edge whose contraction yields a quasi k-connectedgraph, and so there are at least │V(G)│/2 edges of G such that the contraction of every member ofthem results in a quasi k-connected graph.展开更多
基金Projectof Science and Technology Committee of Shanghai Municipality(No2528(3))
文摘Extracting geometric data of landmarks from fluoroscopic images plays an important role in camera calibration process of a fluoroscopic-image-based surgical navigation system. Connected components labeling is the essential technique for the extraction. A new fast connected components labeling algorithm was presented. The definition of upward concave set was introduced to explain the algorithm. Feasibility and efficiency of the algorithm were verified with experiments. This algorithm performs well in labeling non-upward concave set connected components and applies to landmarks labeling well. Moreover, the proposed algorithm possesses a desirable characteristic that will facilitate the subsequent processing of fluoroscopic images.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 81071219)
文摘A fast label-equivalence-based connected components labeling algorithm is proposed in this paper.It is a combination of two existing efficient methods,which are pivotal operations in two-pass connected components labeling algorithms.One is a fast pixel scan method,and the other is an array-based Union-Find data structure.The scan procedure assigns each foreground pixel a provisional label according to the location of the pixel.That is to say,it labels the foreground pixels following background pixels and foreground pixels in different ways,which greatly reduces the number of neighbor pixel checks.The array-based Union-Find data structure resolves the label equivalences between provisional labels by using only a single array with path compression,and it improves the efficiency of the resolving procedure which is very time-consuming in general label-equivalence-based algorithms.The experiments on various types of images with different sizes show that the proposed algorithm is superior to other labeling approaches for huge images containing many big connected components.
基金Supported by the National Natural Science Foundation of China (6 98730 6 )
文摘An analysis and computation method of connectivity between components that based on logical subtyping is first presented, the concepts of virtual interface and real interface, and quantitative analysis and computation formula of connectivity between interfaces are also introduced, that based on a extendable software architecture specification language model. We provide a new idea for solving the problem of connection between reuse components.
文摘Let g and h be two transcendental entire functions. Suppose that the Fatou set F(goh) contains multiply connected components. In this article, we will consider the growth of the functions g and h.
基金supported by the National Natural Science Foundation of China, No.81974331(to XYZ)Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant, No.20161429(to XYZ)
文摘Although cerebral neuroplasticity following amputation has been observed, little is understood about how network-level functional reorganization occurs in the brain following upper-limb amputation. The objective of this study was to analyze alterations in brain network functional connectivity(FC) in upper-limb amputees(ULAs). This observational study included 40 ULAs and 40 healthy control subjects;all participants underwent resting-state functional magnetic resonance imaging. Changes in intra-and inter-network FC in ULAs were quantified using independent component analysis and brain network FC analysis. We also analyzed the correlation between FC and clinical manifestations, such as pain. We identified 11 independent components using independent component analysis from all subjects. In ULAs, intra-network FC was decreased in the left precuneus(precuneus gyrus) within the dorsal attention network and left precentral(precentral gyrus) within the auditory network;but increased in the left Parietal_Inf(inferior parietal, but supramarginal and angular gyri) within the ventral sensorimotor network, right Cerebelum_Crus2(crus Ⅱ of cerebellum) and left Temporal_Mid(middle temporal gyrus) within the ventral attention network, and left Rolandic_Oper(rolandic operculum) within the auditory network. ULAs also showed decreased inter-network FCs between the dorsal sensorimotor network and ventral sensorimotor network, the dorsal sensorimotor network and right frontoparietal network, and the dorsal sensorimotor network and dorsal attention network. Correlation analyses revealed negative correlations between inter-network FC changes and residual limb pain and phantom limb pain scores, but positive correlations between inter-network FC changes and daily activity hours of stump limb. These results show that post-amputation plasticity in ULAs is not restricted to local remapping;rather, it also occurs at a network level across several cortical regions. This observation provides additional insights into the plasticity of brain networks after upper-limb amputation, and could contribute to identification of the mechanisms underlying post-amputation pain.
基金supported in part by the National Natural Science Foundation of China under Grant No.61471055
文摘Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics.
基金supported in part by the National Natural Science Foundation of China(Grant No.62066024)Gansu Province Higher Education Industry Support Plan(2021CYZC34)Lanzhou Talent Innovation and Entrepreneurship Project(2021-RC-27,2021-RC-45).
文摘To guarantee the safety of railway operations,the swift detection of rail surface defects becomes imperative.Traditional methods of manual inspection and conventional nondestructive testing prove inefficient,especially when scaling to extensive railway networks.Moreover,the unpredictable and intricate nature of defect edge shapes further complicates detection efforts.Addressing these challenges,this paper introduces an enhanced Unified Perceptual Parsing for Scene Understanding Network(UPerNet)tailored for rail surface defect detection.Notably,the Swin Transformer Tiny version(Swin-T)network,underpinned by the Transformer architecture,is employed for adept feature extraction.This approach capitalizes on the global information present in the image and sidesteps the issue of inductive preference.The model’s efficiency is further amplified by the windowbased self-attention,which minimizes the model’s parameter count.We implement the cross-GPU synchronized batch normalization(SyncBN)for gradient optimization and integrate the Lovász-hinge loss function to leverage pixel dependency relationships.Experimental evaluations underscore the efficacy of our improved UPerNet,with results demonstrating Pixel Accuracy(PA)scores of 91.39%and 93.35%,Intersection over Union(IoU)values of 83.69%and 87.58%,Dice Coefficients of 91.12%and 93.38%,and Precision metrics of 90.85%and 93.41%across two distinct datasets.An increment in detection accuracy was discernible.For further practical applicability,we deploy semantic segmentation of rail surface defects,leveraging connected component processing techniques to distinguish varied defects within the same frame.By computing the actual defect length and area,our deep learning methodology presents results that offer intuitive insights for railway maintenance professionals.
文摘Image segmentation denotes a process for partitioning an image into distinct regions, it plays an important role in interpretation and decision making. A large variety of segmentation methods has been developed;among them, multidimensional histogram methods have been investigated but their implementation stays difficult due to the big size of histograms. We present an original method for segmenting n-D (where n is the number of components in image) images or multidimensional images in an unsupervised way using a fuzzy neighbourhood model. It is based on the hierarchical analysis of full n-D compact histograms integrating a fuzzy connected components labelling algorithm that we have realized in this work. Each peak of the histo- gram constitutes a class kernel, as soon as it encloses a number of pixels greater than or equal to a secondary arbitrary threshold knowing that a first threshold was set to define the degree of binary fuzzy similarity be- tween pixels. The use of a lossless compact n-D histogram allows a drastic reduction of the memory space necessary for coding it. As a consequence, the segmentation can be achieved without reducing the colors population of images in the classification step. It is shown that using n-D compact histograms, instead of 1-D and 2-D ones, leads to better segmentation results. Various images were segmented;the evaluation of the quality of segmentation in supervised and unsupervised of segmentation method proposed compare to the classification method k-means gives better results. It thus highlights the relevance of our approach, which can be used for solving many problems of segmentation.
文摘Based on detailed analysis of advantages and disadvantages of the existing connected-component labeling (CCL) algorithm,a new algorithm for binary connected components labeling based on run-length encoding (RLE) and union-find sets has been put forward.The new algorithm uses RLE as the basic processing unit,converts the label merging of connected RLE into sets grouping in accordance with equivalence relation,and uses the union-find sets which is the realization method of sets grouping to solve the label merging of connected RLE.And the label merging procedure has been optimized:the union operation has been modified by adding the "weighted rule" to avoid getting a degenerated-tree,and the "path compression" has been adopted when implementing the find operation,then the time complexity of label merging is O(nα(n)).The experiments show that the new algorithm can label the connected components of any shapes very quickly and exactly,save more memory,and facilitate the subsequent image analysis.
文摘An Intelligent Transportation System (ITS) is a new system developed for the betterment of user in traffic and transport management domain area for smart and safe driving. ITS subsystems are Emergency vehicle notification systems, Automatic road enforcement, Collision avoidance systems, Automatic parking, Map database management, etc. Advance Driver Assists System (ADAS) belongs to ITS which provides alert or warning or information to the user during driving. The proposed method uses Gaussian filtering and Median filtering to remove noise in the image. Subsequently image subtraction is achieved by subtracting Median filtered image from Gaussian filtered image. The resultant image is converted to binary image and the regions are analyzed using connected component approach. The prior work on speed bump detection is achieved using sensors which are failed to detect speed bumps that are constructed with small height and the detection rate is affected due to erroneous identification. And the smartphone and accelerometer methodologies are not perfectly suitable for real time scenario due to GPS error, network overload, real-time delay, accuracy and battery running out. The proposed system goes very well for the roads which are constructed with proper painting irrespective of their dimension.
文摘This paper introduces CBFEM (component-based finite element model) which is a new method to analyze and design connections of steel structures. Design focused CM (component model) is compared to FEM (finite elements models). Procedure for composition of a model based on usual production process is used in CBFEM. Its results are compared to those obtained by component method for portal frame eaves moment connection with good agreement. Design of moment resistant column base is demonstrated by a case loaded by two directional bending moments and normal force. Interaction of several connections in one complex joint is explained in the last example. This paper aims to provide structural engineers with a new tool to effectively analyze and design various joints of steel structures.
基金the National High Technology Research and Development Program of China (2007AA012420)
文摘Based on the in-depth analysis of the interaction patterns between the components of software system in architecture, this paper illustrates that the association among them is complex and usually changeable during the running period. So we assume the interactions between two adjacency components are grouped into a single connector, which can be used to analyze the influence of components assembly on the survivability for software architecture. The survivability of the components assembly is mapped into the connectivity of graph model. We also bring forward a simplicity method to calculate and quantify the survivability of architecture that could provide a more usable model for designers to evaluate the architecture.
文摘In 2012, Hsu et al. generalized the classical connectivity of graph G and introduced the concept of g-component connectivity CK<sub>g</sub> (G) to measure the fault tolerance of networks. In this paper, we determine the g-component connectivity of some graphs, such as fan graph, helm graph, crown graph, Gear graph and the Mycielskian graph of star graph and complete bipartite graph.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金supported by the National Natural Science Foundation of China,No.60905024
文摘Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
文摘This paper analyses the synchronization problem of a generator onto power system without satisfying synchronization condition. The main focus of the paper is on the impact of the dc component of the current in the high voltage circuit breaker during its close-open operating cycle. Using real time measurements of currents/voltages and angles during the close-opening cycle of high voltage generator circuit breaker and the impact of the dc component of current in context of interrupting large magnitude of current from the circuit breaker. In addition, the paper describes a study case model and the results of simulations performed using the software EMTP-ATP of an actual incident that occurred during the inadvertent synchronization of a large 339 MW, 24 kV generator to the grid.
基金supported by National Natural Science Foundation of China(11071016)Union Foundation of The Science and Technology Department of Guizhou Province,Anshun GovernmentAnshun University(Qiankehe LH Zi[2014]7500)
文摘Let G be a k-connected graph, and T be a subset of V(G). If G-T is not connected,then T is said to be a cut-set of G. A k-cut-set T of G is a cut-set of G with │T│=k. Let T bea k-cut-set of a k-connected graph G. If G - T can be partitioned into subgraphs G1 and G2such that │G1│≥ 2, │G2│ 〉 2, then we call T a nontrivial k-cut-set of G. Suppose that G is a(k-1)-connected graph without nontrivial (k - 1)-cut-set. Then we call G a quasi k-connectedgraph. In this paper, we prove that for any integer k ≥ 5, if G is a k-connected graph withoutK4-, then every vertex of G is incident with an edge whose contraction yields a quasi k-connectedgraph, and so there are at least │V(G)│/2 edges of G such that the contraction of every member ofthem results in a quasi k-connected graph.