期刊文献+
共找到1,298篇文章
< 1 2 65 >
每页显示 20 50 100
The Qinghai-Tibet Railway:An Engineering Miracle
1
作者 ZHANG HUA 《China Today》 2002年第12期14-21,共8页
WHEN railway constructionworkers first came to theQinghai-Tibet Plateau, they were amazed at the majesty ofits snowfield scenery. Cut off from theoutside world, everything on the plateau- its snow-capped mountains, gr... WHEN railway constructionworkers first came to theQinghai-Tibet Plateau, they were amazed at the majesty ofits snowfield scenery. Cut off from theoutside world, everything on the plateau- its snow-capped mountains, grassland,lamas, prayer banners, the Potala Palace,and the Tibetan people living 4,000 metersor more above sea level, has an aura ofmystery.Beautiful it may be, but Tibet lags behind other areas of China. Inadequate transportation facilities restrict its economic development, as it is only accessible by highway or air transportation. 展开更多
关键词 The qinghai-tibet railway:An Engineering Miracle ZHANG
下载PDF
“Golden Bridge”for Tibetan People——How the Qinghai-Tibet Railway is Being Built
2
《The Journal of Human Rights》 2003年第1期30-35,共6页
Aplateau railway, the Qinghai-Tibet Railway, will run across the "roof of the world" with an average elevation of more than 4,000 meters. The railway, the highest in altitude in the world, will terminate in ... Aplateau railway, the Qinghai-Tibet Railway, will run across the "roof of the world" with an average elevation of more than 4,000 meters. The railway, the highest in altitude in the world, will terminate in Lhasa, capital of Tibet Autonomous Region. This steel artery is likened to a "golden bridge" on the great plateau. For the Tibetan people, the "golden bridge" leads to Beijing and to a better life. 展开更多
关键词 for Tibetan People in more IS Golden Bridge How the qinghai-tibet railway is Being Built than
下载PDF
Golmud,the Kunlun Mountains and the Qinghai-Tibet Railway
3
作者 SHEN HONGLEI 《China Today》 2002年第12期22-24,共3页
QINGHAI Province, on the Qinghai-Tibet Plateau, is to many people a remote and mysterious place. This reporter recently traveled with the 2002 Qinghai in Focus Photographers Group on their trip from the Qinghai hinter... QINGHAI Province, on the Qinghai-Tibet Plateau, is to many people a remote and mysterious place. This reporter recently traveled with the 2002 Qinghai in Focus Photographers Group on their trip from the Qinghai hinterland on the northern part of the plateau to Golmud, the Kunlun Mountains, and the Qinghai-Tibet Railway construction site.Golmud, Born with the HighwayIt took us 2 hours and 10 minutes to fly the 1,150 kilometer distance from Beijing to Xining, capital city of Qinghai Province. From there we boarded a train that went directly west to Golmud. 展开更多
关键词 Golmud the Kunlun Mountains and the qinghai-tibet railway
下载PDF
A system for automated monitoring of embankment deformation along the Qinghai-Tibet Railway in permafrost regions 被引量:2
4
作者 YongPeng Yang YaoHui Qu +2 位作者 HanCheng Cai JiaCheng CaiMei Tang 《Research in Cold and Arid Regions》 CSCD 2015年第5期560-567,共8页
At present, the monitoring of embankment deformation in permafrost regions along the Qinghai-Tibet Railway is mainly done manually. However, the harsh climate on the plateau affects the results greatly by lowering the... At present, the monitoring of embankment deformation in permafrost regions along the Qinghai-Tibet Railway is mainly done manually. However, the harsh climate on the plateau affects the results greatly by lowering the observation frequency, so the manual monitoring can barely meet the observational demand. This research develops a system of automated monitoring of embankment deformation, and aims to address the problems caused by the plateau climate and the perma- frost conditions in the region. The equipment consists of a monitoring module, a data collection module, a transmission module, and a data processing module. The field experiments during this program indicate that (1) the combined auto- mated monitoring device overcame the problems associated with the complicated and tough plateau environment by means of wireless transmission and automatic analysis of the embankment settlement data; (2) the calibration of the combined settlement gauge at -20 ℃ was highly accurate, with an error rate always 〈0.5%; (3) the gauge calibration at high-temperature conditions was also highly accurate, with an error rate 〈0.5% even though the surface of the instrument reached more than 50 ℃; and (4) compared with the data manually taken, the data automatically acquired during field monitoring experiments demonstrated that the combined settlement gauge and the automated monitoring system could meet the requirements of the monitoring mission in permafrost regions along the Qinghai-Tibet Railway. 展开更多
关键词 qinghai-tibet railway PERMAFROST automated monitoring of embankment deformation reliability analysis
下载PDF
Analysis of the Cooling Mechanism of a Crushed Rock Embankment in Warm and Lower Temperature Permafrost Regions along the Qinghai-Tibet Railway 被引量:2
5
作者 Wei Ma Qingbai Wu +1 位作者 Yongzhi Liu Hui Bing 《Research in Cold and Arid Regions》 2008年第1期14-25,共12页
Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The r... Based on data monitored in situ and theoretical analysis,the characteristics of the temperature field and mechanism of thermal conduction of a crushed rock embankment were studied along the Qinghai-Tibet Railway.The results of experi-ments in the field revealed that the cooling effect of a crushed rock embankment is influenced mainly by the natural con-vection in winter and shield effect in summer,the ventilation of crushed rocks,and the ground temperature regime be-neath the embankment.Consequently,these three factors should be taken into account in numerical simulations,but it is as a result of natural convection only. 展开更多
关键词 qinghai-tibet railway permafrost region crushed rock embankment cooling mechanism
下载PDF
Impact of the Qinghai-Tibet Railway on Population Genetic Structure of the Toad-Headed Lizard,Phrynocephalus vlangalii 被引量:1
6
作者 Dun HU Jinzhong FU +1 位作者 Fangdong ZOU Yin QI 《Asian Herpetological Research》 SCIE 2012年第4期280-287,共8页
Using data from nine microsatellite DNA loci and a population genetic approach,we evaluate the barrier effect of the Qinghai-Tibet Railway on toad-headed lizard,Phrynocephalus vlangalii. The study area is along a 20 k... Using data from nine microsatellite DNA loci and a population genetic approach,we evaluate the barrier effect of the Qinghai-Tibet Railway on toad-headed lizard,Phrynocephalus vlangalii. The study area is along a 20 km stretch of the railway on northern Qinghai-Tibet Plateau,and this section of the railway was constructed between 1958–1979. Both assignment tests and analysis of molecular variance(AMOVA) were used for data analysis. We found significant genetic differentiation between the populations from the study area and those from a further southeastern area,which are separated by a 20 km gap. This suggests the existence of population substructure at a fine-scale. However,we did not detect any difference between samples from the western and eastern sides of the railway within the study area,and concluded that the railway may not impose a significant barrier effect on these lizard populations at the present time. Available suitable habitat alongside the railway and bridge underpasses may have facilitated the gene exchange between the sides. The relatively short time since the completion of the railway may not allow the differentiation to accumulate to a detectable level. Since the Qinghai-Tibet Plateau maintains a unique and fragile ecosystem,long-term monitoring of such man-made landscape features is imperative for protecting this ecosystem. 展开更多
关键词 qinghai-tibet railway barrier effect population structure Phrynocephalus vlangalii microsatellite DNA Bayesian assignment test
下载PDF
Thermal Characteristics of the Embankment with Crushed Rock Side Slope to Mitigate Thaw Settlement Hazards of the Qinghai-Tibet Railway 被引量:1
7
作者 LI Guoyu MU Yanhu ZHANG Xia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第5期1000-1007,共8页
Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥1℃) and massive ground ice. Under the scenarios of... Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥1℃) and massive ground ice. Under the scenarios of global warming and human activity, the permafrost under the railway will gradually thaw and the massive ground ice will slowly melt, resulting in some thaw settlement hazards, which mainly include longitudinal and lateral cracks, and slope failure. The crushed rock layer has a thermal semiconductor effect under the periodic fluctuation of natural air. It can be used to lower the temperature of the underlying permafrost along the Qinghai-Tibet railway, and mitigate the thaw settlement hazards of the subgrade. In the present paper, the daily and annual changes in the thermal characteristics of the embankment with crushed rock side slope (ECRSS) were quantitatively simulated using the numerical method to study the cooling effect of the crushed rock layer and its mitigative ability. The results showed that the ECRSS absorbed some heat in the daytime in summer, but part of it was released at night, which accounted for approximately 20% of that absorbed. Within a year, it removed more heat from the railway subgrade in winter than that absorbed in summer. It can store approximately 20% of the "cold" energy in subgrade. Therefore, ECRSS is a better measure to mitigate thaw settlement hazards to the railway. 展开更多
关键词 qinghai-tibet railway climate change embankment with crushed rock side slope numerical analysis thaw settlement
下载PDF
Characteristics of sand damages and dynamic environment along the Tuotuohe section of the Qinghai-Tibet Railway 被引量:1
8
作者 KeCun Zhang QingHe Niu JianJun Qu ZhengYi Yao QingJie Han 《Research in Cold and Arid Regions》 2011年第2期137-142,共6页
Sand damages along the Qinghai-Tibet Railway occur frequently and have spread rapidly since it was completely opened to traffic in 2006. The goal of this study was to understand the effects of sand damages on the rail... Sand damages along the Qinghai-Tibet Railway occur frequently and have spread rapidly since it was completely opened to traffic in 2006. The goal of this study was to understand the effects of sand damages on the railway via meteorological data and in situ observation of wind-blown sand. We selected the Tuotuohe section of this railway as a typical research object, and we systematically investigated its characteristics of sand damages, drift potential, sand-driving wind rose, and their time variation. The direction of sand-drifting wind clearly varies with the season. In winter, the predominant wind blows from the west and lasts for three months, while in summer the frequency of northeasterly wind begins to increase and multi-directional winds also occurs in July. The drift potential in this area is 705.81 VU, which makes this a high-energy wind environment according to Fryberger's definition. The directional variability (RDP/DP) is 0.84 and the resultant drift potential is 590.42 VU with a resultant direction of 89.1°. 展开更多
关键词 qinghai-tibet railway sand damages sand-driving wind rose drift potential
下载PDF
Analysis of the Theoretical Foundation and Engineering Effect for Air-duct Embankment on the Qinghai-Tibet Railway
9
作者 Jiang Fuqiang~ 1, 2 (1.The Northwest Research Institute Co.Ltd of CREC, Lanzhou 730000, Gansu, China 2.Lanzhou Jiaotong Universirty, Lanzhou 730070, Gansu, China) 《工程科学(英文版)》 2007年第2期153-160,共8页
Based on the corresponding theories of engineering thermodynamics and hydro-dynamics, a careful study is made of the characteristics of air flow in different duct-embedded ways. According to critical Reynolds number, ... Based on the corresponding theories of engineering thermodynamics and hydro-dynamics, a careful study is made of the characteristics of air flow in different duct-embedded ways. According to critical Reynolds number, the atmospheric critical velocity of the duct with different diameters, which makes laminar flow different from turbulent flow, is calculated. Given the condition in which a forced flow occurs and the wind strength is larger than the atmospheric pressure gradient along the air-duct, a rational ratio of the length to the diameter is presented. Based on the above theory and field test data on soil temperature and embankment settlement, the advantages and disadvantages are discussed in details of all duct-embedded ways that might affect the stability of embankment. 展开更多
关键词 qinghai-tibet railway air-duct EMBANKMENT application PERMAFROST ENGINEERING
下载PDF
Thermal stability of permafrost under U-shaped crushed rock embankment of the Qinghai-Tibet Railway
10
作者 Kun-Ming XU Guan-Li JIANG +1 位作者 Ji CHEN Qing-Bai WU 《Advances in Climate Change Research》 SCIE CSCD 2024年第1期158-169,共12页
The U-shaped crushed rock embankment(UCRE),of which widely utilized in the permafrost regions along the Qinghai-Tibet Railway,has the capability to rapidly reduce the ground temperature of the underlying permafrost.Ho... The U-shaped crushed rock embankment(UCRE),of which widely utilized in the permafrost regions along the Qinghai-Tibet Railway,has the capability to rapidly reduce the ground temperature of the underlying permafrost.However,there remains uncertainty regarding the adaptation of UCRE to climate change and its long-term cooling trend.This study focuses on nine UCRE monitoring sites along the Qinghai-Tibet Railway to analyze the dynamic variations of the ground temperature underlying permafrost from 2006 to 2020.The efficiency of UCRE in stabilizing permafrost temperature in different permafrost zones is evaluated by considering the permafrost table,ground temperature,and MAGT,as well as the temperature difference between the top and bottom of the crushed rock layer and the ground temperature variation index(GTVI).The results show that UCRE is suitable for application in extremely unstable warm permafrost regions where the MAGT is higher than-0.5℃.Moreover,UCRE effectively diminishes the disparity in permafrost thermal stability between the sunny and shaded shoulders of the embankment.The short-term and long-term effect of cooling permafrost is experiencing a change related with permafrost stability.Notably,in stable cold permafrost regions with MAGT lower than-1.5℃,the long-term cooling effect of UCRE on permafrost seems to gradually di-minishes,but UCRE continues to fulfill the role of stabilizing the underlying permafrost thermal state over the long-term.These results show that UCRE can quickly restore and stabilize the thermal state of permafrost in the early stages of construction,and adapt to the influence of future climate change.The findings provide important guidance for understanding the variations of permafrost thermal stability beneath the embankment in permafrost regions,as well as for improving the embankment stability and operational safety of the Qinghai-Tibet Railway. 展开更多
关键词 qinghai-tibet railway U-shaped crushed rock embankment Climate change Permafrost zone Ground temperature variation index Long-term coolingrole
原文传递
Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway 被引量:16
11
作者 CHENG GuoDong WU QingBai MA Wei 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第2期530-538,共9页
Under global warming scenarios, the passive method of simply increasing the thermal resistance by raising the embankment height and using insulating materials has been proven ineffective in warm and ice-rich permafros... Under global warming scenarios, the passive method of simply increasing the thermal resistance by raising the embankment height and using insulating materials has been proven ineffective in warm and ice-rich permafrost areas and therefore could not be used in the Qinghai-Tibet Railway engineering. Instead, a proactive "cooled-roadbed" approach was developed and used to lower the ground temperature in order to maintain a perennially frozen subgrade. The concept that local and site-specific factors play an important role in the occurrence and disappearance of permafrost has helped us to devise a number of measures to cool down the roadbed. For example, we adjust and control heat transfer by using different embankment configurations and fill materials. The Qinghai-Tibet Railway project demonstrates that a series of proactive roadbed-cooling methods can be used to lower the temperature of permafrost beneath the embankment and to stabilize the roadbed. These methods include solar radiation control using shading boards, heat convection control using ventilation ducts, thermosyphons, air-cooled embankments, and heat conduction control using "thermal semi-conductor" materials, as well as combinations of above mentioned three control measures. This road-bed-cooling approach provides not only a solution for engineering construction in sensitive permafrost areas but also a countermeasure against possible global warming. 展开更多
关键词 WARM PERMAFROST GLOBAL WARMING qinghai-tibet railway cooled ROADBED
原文传递
Land cover change along the Qinghai-Tibet Highway and Railway from 1981 to 2001 被引量:15
12
作者 DING Mingkun ZHANG Yili +5 位作者 SHEN Zhenx LIU Linshan ZHANG Wei WANG Zhaofeng BAI Wanqi ZHENG Du 《Journal of Geographical Sciences》 SCIE CSCD 2006年第4期387-395,共9页
Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indic... Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover. 展开更多
关键词 Tibetan Plateau qinghai-tibet Highway qinghai-tibet railway land cover change NDVI
下载PDF
Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions 被引量:16
13
作者 NIU Fu un LIU MingHao +3 位作者 CHENG GuoDong LIN ZhanJu LUO Jing YIN GuoAn 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第9期1669-1676,共8页
Ten years of ground temperature data(2003–2013) indicate that the long-term thermal regimes within embankments of the Qinghai-Tibet Railway(QTR) vary significantly with different embankment structures. Obvious asymme... Ten years of ground temperature data(2003–2013) indicate that the long-term thermal regimes within embankments of the Qinghai-Tibet Railway(QTR) vary significantly with different embankment structures. Obvious asymmetries exist in the ground temperature fields within the traditional embankment(TE) and the crushed-rock basement embankment(CRBE). Measurements indicate that the TE and CRBE are not conducive to maintaining thermal stability. In contrast, the ground temperature fields of both the crushed-rock sloped embankment(CRSE) and the U-shaped crushed-rock embankment(UCRE) were symmetrical. However, the UCRE gave better thermal stability than the CRSE because slow warming of deep permafrost was observed under the CRSE. Therefore, the UCRE has the best long-term effect of decreasing ground temperature and improving the symmetry of the temperature field. More generally, it is concluded that construction using the cooling-roadbed principle meets the design requirements for long-term stability of the railway and for train transport speeds of 100 km h?1. However, temperature differences between the two shoulders, which exist in all embankments shoulders, may cause potential uneven settlement and might require maintenance. 展开更多
关键词 qinghai-tibet railway PERMAFROST embankment structure thermal regime long-term stability
原文传递
Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport 被引量:7
14
作者 XIAO Jianhua YAO Zhengyi QU Jianjun 《Chinese Geographical Science》 SCIE CSCD 2015年第1期39-50,共12页
The Qinghai-Tibet Railway(QTR) passes through 281 km of sandy land, 11.07 km of which causes serious sand damage to the railway and thus, the control of blown sand is important for the safe operation of the railway. C... The Qinghai-Tibet Railway(QTR) passes through 281 km of sandy land, 11.07 km of which causes serious sand damage to the railway and thus, the control of blown sand is important for the safe operation of the railway. Construction of the railway and sand prevention system greatly changed the blown sand transport of the primary surface. Effective and feasible sand-control measures include stone checkerboard barriers(SCBs), sand fences(SFs), and gravel coverings. This study simulated the embankments, SCBs and SFs of the QTR in a wind tunnel, and analyzed their respective wind profile, sand deposition, and sand-blocking rate(SBR) in conjunction with field data, aiming at studying the influence of Golmud-Lhasa section of the QTR and sand prevention system on blown sand transport. The results of wind tunnel experiments showed that wind speed increased by 67.7%–77.3% at the upwind shoulder of the embankment and decreased by 50.0%–83.3% at upwind foot of embankment. Wind speed decreased by 50.0%–100.0% after passing through the first SF, and 72.2%–100.0% after the first row of stones within the first SCB grid. In the experiment of sand deposition, the higher the wind speed, the lower the SBR of SCB and SF. From field investigation, the amount of sand blocked by the four SFs decreased exponentially and its SBR was about 50.0%. By contrast, SCB could only block lower amounts of sand, but had a higher SBR(96.7%) than SF. Although, results show that SFs and SCBs along the Golmud-Lhasa section of the QTR provide an obvious sand blocking effect, they lead to the deposition of a large amount of sand, which forms artificial dunes and becomes a new source of sand damage. 展开更多
关键词 qinghai-tibet railway(QTR) wind profile blown sand transport sand damage wind tunnel
下载PDF
Porosity of crushed rock layer and its impact on thermal regime of Qinghai-Tibet Railway embankment 被引量:6
15
作者 LIU Ming-hao LI Guo-yu +2 位作者 NIU Fu-jun LIN Zhan-ju LIN Zhan-ju 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期977-987,共11页
It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong w... It has been proven that crushed rock layers used in roadbed construction in permafrost regions have a cooling effect. The main reason is the existence of large porosity of the rock layers. However, due to the strong winds, cold and high radiation conditions on the Qinghai-Tibet Plateau(QTP), both wind-blown sand and/or weathered rock debris blockage might reduce the porosity of the rock layers, resulting in weakening the cooling effect of the crushed rock layer(CRL) in the crushed rock embankment(CRE) of the Qinghai-Tibet Railway(QTR) in the permafrost regions. Such a process might warm the underlying permafrost, and further lead to potential threat to the QTR's integrity and stability. The different porosities corresponding to the different equivalent rock diameters were measured in the laboratory using water saturation method, and an empirical exponential equation between porosity and equivalent rock diameter was proposed based on the measured experimental data and an important finding is observed in our and other experiments that the larger size crushed rock tends to lead to the larger porosity when arbitrarily packing. Numerical tests were carried out to study impacts of porosity on permafrost degradation and differential thaw depths between the sunny and shady shoulders. The results show that the decrease in porosity due to wind-blown sand or weathered rock debris clogging can worsen the permafrost degradation and lead to the asymmetric thermal regime. In the traditional embankment(without the CRL within it), the largest differential thaw depth can reach up to 3.1 m. The optimized porosity appears in a range from 34% to 42% corresponding to equivalent rock diameter from 10 to 20.5 cm. The CRE with the optimized porosities can make underlying permafrost stable and 0 ℃ isotherms symmetric in the coming 50 years, even under the condition that the climate warming can lead to permafrost degradation under the CRE and the traditional embankment. Some practical implications were proposed to benefit the future design, construction and maintenance of CRE in permafrost regions. 展开更多
关键词 qinghai-tibet railway crushed rock embankment POROSITY wind-blown sand permafrost degradation
下载PDF
Exothermic process of cast-in-place pile foundation and its thermal agitation of the frozen ground under a long dry bridge on the Qinghai-Tibet Railway 被引量:5
16
作者 Ya-ping WU Jian GUO +2 位作者 Chun-xiang GUO Wei MA Xiao-jun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期88-96,共9页
A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry ... A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry bridge and its harm to the stability of nearby frozen ground.We present 3D heat conduction functions of a concrete pile and of frozen ground with related boundaries.Our analysis is based on the theory of heat conduction and the exponent law describing the adiabatic temperature rise caused by hydration heat.Results under continuous and initial conditions were combined to establish a finite element model of a CIP pile-frozen ground system for a dry bridge under actual field conditions in cold regions.Numerical results indicated that the process could effectively simulate the exothermic process of CIP pile foundation.Thermal disturbance to frozen ground under a long dry bridge caused by the casting temperature and hydration heat of CIP piles was substantial and long-lasting.The simulated thermal analysis results agreed with field measurements and some significant rules relating to the problem were deduced and conclusions reached. 展开更多
关键词 Exothermic process of hydration heat Cast-in-place (CIP) pile foundation Dry bridge Thermal agitation Frozen ground qinghai-tibet railway
原文传递
Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau 被引量:2
17
作者 Xia Zhao JunFeng Wang +6 位作者 Yun Wang Xiang Lu ShaoFang Liu YuBao Zhang ZhiHong Guo ZhongKui Xie RuoYu Wang 《Research in Cold and Arid Regions》 CSCD 2019年第6期407-418,共12页
An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)reveale... An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)revealed that the accu mulation of heavy metals(over about 10 years)has affected the diversity of bacterial abundance and microbial community structure.The proximity of a sampling site to the QTH/Qinghai-Tibet Railway(QTR),which is effectively a measure of the density of human engineering,was the dominant factor influencing bacterial community diversity.The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas.The dominant phyla across all samples were Actinobacteria and Proteobacteria.The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR(MC/WC sam pling sites),and Ni,Co,and V were positively correlated with proximity to the QTH and QTR(MA/WA sampling sites).The results presented in this study provide an insight into the relationships among heavy metals and soil microbial commu nities,and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment. 展开更多
关键词 qinghai-tibet Highway (QTH) qinghai-tibet railway (QTR) soil bacterial community alpine wetland alpine meadow heavy metal
下载PDF
Permafrost Characteristics of the Qinghai-Tibet Plateau and Methods of Roadbed Construction of Railway 被引量:1
18
作者 NIU Fujun XU Jian +2 位作者 LIN Zhanju WU Qingbai CHENG Guodong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第5期949-958,共10页
Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process... Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process. The main difficulty in railway roadbed construction is how to prevent thawing settlement caused by degradation of permafrost. Therefore the proactively cooling methods based on controlling solar radiation, heat conductivity and heat convection were adopted instead of the traditional passive methods, which is simply increasing thermal resistance. The cooling methods used in the Qinghai-Tibet railway construction include sunshine-shielding roadbeds, crushed rock based roadbeds, roadbeds with rock revetments, duct-ventilated roadbeds, thermosyphon installed roadbeds and land bridges. The field monitored data show that the cooling methods are effective in protecting the underlying permafrost, the permafrost table was uplifted under the embankments and therefore the roadbed stability was guaranteed. 展开更多
关键词 PERMAFROST ROADBED cooling method qinghai-tibet railway
下载PDF
Analyses on the Types,Distributions and Characteristics of Vegetation and Soil along Qinghai-Tibet Railway 被引量:1
19
作者 Shengbo Xie Jianjun Qu 《Meteorological and Environmental Research》 CAS 2013年第9期15-18,共4页
[Objeective] The research aimed to study the types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Rail- way. [ Method]Types, distributions and characteristics of vegetation and soil alo... [Objeective] The research aimed to study the types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Rail- way. [ Method]Types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Railway were studied by field investigation meth- od. [Result] The vegetation along Qinghai -Tibet Railway was dominated by alpine grassland and meadow, while the soil was dominated by alpine steppe soil and meadow soil corresponding along the railway. They both concentrated distnbutions at the section from Kunlun Mountain to Nyainqen- tanglha Mountain. [ Conclusion] The research could provide the basis for disaster control and resource development of Qinghai-Tibet Railway. 展开更多
关键词 qinghai-tibet railway VEGETATION SOIL China
下载PDF
Prevention and management of wind-blown sand damage along Qinghai-Tibet Railway in Cuonahu Lake area 被引量:3
20
作者 YinHai Yang BenZhen Zhu +2 位作者 FuQiang Jiang XiLai Wang Yong Li 《Research in Cold and Arid Regions》 2012年第2期132-139,共8页
This paper analyzes the characteristics of climate, geology and geomorphology, vegetation, and sand dune distribution in the Cuonahu Lake area beside the Qinghai-Tibet Railway. The types and causes of railway blown-sa... This paper analyzes the characteristics of climate, geology and geomorphology, vegetation, and sand dune distribution in the Cuonahu Lake area beside the Qinghai-Tibet Railway. The types and causes of railway blown-sand hazards are discussed, and the effectiveness of various sand-controlling measures is assessed. From the perspective of integrated management, a sand-controlling system that combines several engineering measures, including nylon net sand barriers, concrete sand barriers, movable-board sand barriers, sand interception ditches, gravel/rock cover, film sandbags, and permanent vegetation is most beneficial. 展开更多
关键词 qinghai-tibet railway Cuonahu Lake wind-blown-sand disaster prevention measures
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部