In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-...In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and its volume transport is about 21×06 m3/s; (5) the volume transports of the Kuroshio through the sections B2 (at the Tokara Strait) and C6 (southeast of Kyushu) are 23. 33, 67. 31×106 m3/s, respectively; (6) there are two meso-scale anticyclonic warm eddies between 135° E and the area east of the Ryukyu Islands, and their characters and hydrographic structure are discussed.展开更多
A modified inverse method is used to compute the circulations east of Taiwan and in the East China Sec and east of the Ryukyu Islands with hydrographic data obtained during early summer of 1985. The computational regi...A modified inverse method is used to compute the circulations east of Taiwan and in the East China Sec and east of the Ryukyu Islands with hydrographic data obtained during early summer of 1985. The computational region covers an area west of 129°E and from 21°45'N to 35°N. The computed results show that: (1 ) The net volume transport (VT ) of the Kuroshio through 21°45'N Section east of Ta Taiwan and west of 123°E is about 45 × 10 ̄6 m ̄3/sduring early summer of 1985. The Kuroshio has. two current cores. One is located near Taiwan, and its velocity isvery large and its maximum velocity is 226 cm/s at the 100 m level, which is close to the maximum velocity of the beginning of the Kuroshio east of the Philippines. The other is located further to the east, and its maximum velocity is159 cm/s at the 100m level; (2) through a transect northwest Of Miyakojima Island and a transect southwest of Okinawa laaed the volume transports of the Kuroshio in the East China Sea both are about 25 × 10 ̄6 m ̄3/s. The maximumvelocity of the Kuroshio at these two sections is 194 and 128 cm/s, respectively, and both are located on the shelfbreak; (3) beneath and east of the Kurohio there are the countercurrent (4) southeast of Okinawa Island there is anortheastward current, and its VT at Section HI is about 12. 6 × 10 ̄6 m ̄3/s, and it comes from a westward flow at 129° This project was supported by the National Natural Science Foundation of China under contract No. 49476278.(Second Institute of Oceanography, State Oceanic Administration, Hongzhou310012, China) (Institute of Oceanography, Taiwan University, Taipei, China)E Section and the recirculating gyre, and does not originate from the Kuroshio east of Taiwan during early summer of 1985. There is a southwestward abyssal current east of Okinawa Islands (5) there are several different scale eddies in this computational region. For example, there is a meso-scale strong cyclonic eddy east of Miyakojima Island.展开更多
文摘In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and its volume transport is about 21×06 m3/s; (5) the volume transports of the Kuroshio through the sections B2 (at the Tokara Strait) and C6 (southeast of Kyushu) are 23. 33, 67. 31×106 m3/s, respectively; (6) there are two meso-scale anticyclonic warm eddies between 135° E and the area east of the Ryukyu Islands, and their characters and hydrographic structure are discussed.
文摘A modified inverse method is used to compute the circulations east of Taiwan and in the East China Sec and east of the Ryukyu Islands with hydrographic data obtained during early summer of 1985. The computational region covers an area west of 129°E and from 21°45'N to 35°N. The computed results show that: (1 ) The net volume transport (VT ) of the Kuroshio through 21°45'N Section east of Ta Taiwan and west of 123°E is about 45 × 10 ̄6 m ̄3/sduring early summer of 1985. The Kuroshio has. two current cores. One is located near Taiwan, and its velocity isvery large and its maximum velocity is 226 cm/s at the 100 m level, which is close to the maximum velocity of the beginning of the Kuroshio east of the Philippines. The other is located further to the east, and its maximum velocity is159 cm/s at the 100m level; (2) through a transect northwest Of Miyakojima Island and a transect southwest of Okinawa laaed the volume transports of the Kuroshio in the East China Sea both are about 25 × 10 ̄6 m ̄3/s. The maximumvelocity of the Kuroshio at these two sections is 194 and 128 cm/s, respectively, and both are located on the shelfbreak; (3) beneath and east of the Kurohio there are the countercurrent (4) southeast of Okinawa Island there is anortheastward current, and its VT at Section HI is about 12. 6 × 10 ̄6 m ̄3/s, and it comes from a westward flow at 129° This project was supported by the National Natural Science Foundation of China under contract No. 49476278.(Second Institute of Oceanography, State Oceanic Administration, Hongzhou310012, China) (Institute of Oceanography, Taiwan University, Taipei, China)E Section and the recirculating gyre, and does not originate from the Kuroshio east of Taiwan during early summer of 1985. There is a southwestward abyssal current east of Okinawa Islands (5) there are several different scale eddies in this computational region. For example, there is a meso-scale strong cyclonic eddy east of Miyakojima Island.