In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correcti...In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.展开更多
Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast d...Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.展开更多
A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successful...A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.展开更多
Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed a...Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed and were determined to be hydrogen-bonded molecular complexes of monomeric species. Double ions (clusters containing a NH4+ cation and a HSO4- anion) or even ternary ions (clusters with two NH4+ cations and one SO42- anion) spontaneously formed in the most stable clusters of 2NH3:H2SO4:nH2O (n = 2, 3, 4). The energetics of binding and incremental association was also calculated. Double ions are not energetically favorable until 2NH3:H2SO4:2H2O because of the about equal free energies for forming the neutral (the most stable) and double ion (the second stable) isomers. The free energy of incremental association from free H2O and 2NH3:H2SO4:nH2O has a maximum at n = 2 at room temperature with ΔG ≈ –2 kcal/mol. The comparison of incremental association energies between 2NH3:H2SO4:nH2O, NH3:H2SO4:nH2O and H2SO4:nH2O clusters revealed that NH3 plays an important role in the atmospheric particle nucleation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100201120028)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No.EIPE10303)
文摘In this paper, period-doubling bifurcation in a two-stage power factor correction converter is analyzed by using the method of incremental harmonic balance (IHB) and Floquet theory. A two-stage power factor correction converter typically employs a cascade configuration of a pre-regulator boost power factor correction converter with average current mode control to achieve a near unity power factor and a tightly regulated post-regulator DC-DC Buck converter with voltage feedback control to regulate the output voltage. Based on the assumption that the tightly regulated postregulator DC-DC Buck converter is represented as a constant power sink and some other assumptions, the simplified model of the two-stage power factor correction converter is derived and its approximate periodic solution is calculated by the method of IHB. And then, the stability of the system is investigated by using Floquet theory and the stable boundaries are presented on the selected parameter spaces. Finally, some experimental results are given to confirm the effectiveness of the theoretical analysis.
基金funded by Geran Galakan Penyelidik Muda GGPM-2020-004 Universiti Kebangsaan Malaysia.
文摘Grid-connected reactive-load compensation and harmonic control are becoming a central topic as photovoltaic(PV)grid-connected systems diversified.This research aims to produce a high-performance inverter with a fast dynamic response for accurate reference tracking and a low total har-monic distortion(THD)even under nonlinear load applications by improving its control scheme.The proposed system is expected to operate in both stand-alone mode and grid-connected mode.In stand-alone mode,the proposed controller supplies power to critical loads,alternatively during grid-connected mode provide excess energy to the utility.A modified variable step incremental conductance(VS-InCond)algorithm is designed to extract maximum power from PV.Whereas the proposed inverter controller is achieved by using a modified PQ theory with double-band hysteresis current controller(PQ-DBHCC)to produce a reference current based on a decomposition of a single-phase load current.The nonlinear rectifier loads often create significant distortion in the output voltage of single-phase inverters,due to excessive current harmonics in the grid.Therefore,the proposed method generates a close-loop reference current for the switching scheme,hence,minimizing the inverter voltage distortion caused by the excessive grid current harmonics.The simulation findings suggest the proposed control technique can effectively yield more than 97%of power conversion efficiency while suppressing the grid current THD by less than 2%and maintaining the unity power factor at the grid side.The efficacy of the proposed controller is simulated using MATLAB/Simulink.
基金National Natural Science Foundation of China(No.10872128)
文摘A force-based quadrilateral plate element( 4NQP13) for the analysis of the plate bending problems using large increment method( LIM) was proposed. The LIM, a force-based finite element method( FEM),has been successfully developed for the analysis of truss,beam,frame,and 2D continua problems. In these analyses,LIMcan provide more precise stress results and less computational time consumption compared with displacement-based FEM. The plate element was based on the Mindlin-Reissner plate theory which took into account the transverse shear effects.Numerical examples were presented to study its performance including accuracy and convergence behavior,and the results were compared with the results have been obtained from the displacementbased quadrilateral plate elements and the analytical solutions. The4NQP13 element can analyze the moderately thick plates and the thin plates using LIMand is free from spurious zero energy modes and free from shear locking for thin plate analysis.
基金supported by the National Natural Science Foundation of China (20528706)the China Postdoctoral Science Foundation (20090450385)
文摘Density functional theory was used at the B3LYP/6-311++G(d,p) level of theory to study the hydrates of 2NH3:H2SO4:nH2O for n = 0~4. Neutrals of the most stable clusters, when n = 0 and 1, spontaneously formed and were determined to be hydrogen-bonded molecular complexes of monomeric species. Double ions (clusters containing a NH4+ cation and a HSO4- anion) or even ternary ions (clusters with two NH4+ cations and one SO42- anion) spontaneously formed in the most stable clusters of 2NH3:H2SO4:nH2O (n = 2, 3, 4). The energetics of binding and incremental association was also calculated. Double ions are not energetically favorable until 2NH3:H2SO4:2H2O because of the about equal free energies for forming the neutral (the most stable) and double ion (the second stable) isomers. The free energy of incremental association from free H2O and 2NH3:H2SO4:nH2O has a maximum at n = 2 at room temperature with ΔG ≈ –2 kcal/mol. The comparison of incremental association energies between 2NH3:H2SO4:nH2O, NH3:H2SO4:nH2O and H2SO4:nH2O clusters revealed that NH3 plays an important role in the atmospheric particle nucleation.