Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioe...Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioess-paleosol sequence at the Guchuanzhen site (GCZ). These palaeoflood SWDs were studied by field observations and laboratory analyses including concentrations of chemical elements and optically stimulated luminescence (OSL) dating. The results showed that the palaeoflood SWDs were the result of the secondary separations of the surface soil and weathered soil layers during the process of water transport and deposition, and without obvious weathering during soil development. These extraordinary flood events were dated back to 3,200-3,000 a B.P. with the OSL method and checked by archaeological dating of the human remains retrieved from the profile. These extraordinary flood events were therefore considered as regional expression of known climatic events and demonstrated the climatic instability in the Holocene. This result is important for understanding the effects of global climate change on the dynamics of river systems.展开更多
Maintenance of the ecosystem health of a river is of great importance for local sustainable development. On the basis of both qualitative and quantitative analysis of the influence of natural variations and human acti...Maintenance of the ecosystem health of a river is of great importance for local sustainable development. On the basis of both qualitative and quantitative analysis of the influence of natural variations and human activities on the ecosystem function of the Weihe River, the changes in major factors affecting its ecosystem health are deter- mined, which include: 1) Deficiency of environment flow: since the 1960s, the incoming stream flow shows an obvious decreasing tendency. Even in the low flow period, 80% of the water in the stream is impounded by dams for agriculture irrigation in the Baoji district. As a result, the water flow maintained in the stream for environmental use is very limited. 2) Deterioration of water quality: the concentrations of typical pollutants like Chemical Oxygen Demand (COD) and NH3-N are higher than their maximum values of the Chinese environmental quality standard. Very few fish species can survive in the River. 3) Deformation of water channels: the continuous channel sedimentation has resulted in the decrease in stream gradient, shrinkage of riverbed and the decline in the capability for flood discharge. 4) Loss of riparian vegetation: most riparian land has been occupied by urban construction activities, which have caused the loss of riparian vegetation and biodiversity and further weakened flood control and water purification functions.展开更多
基金funded by the National Natural Science Foundation of China(41030637)the Science and Technology Project of Baoji City(14SFGG-2)+1 种基金the Fundamental Research Funds for Key Subject Physical Geography of Baoji University of Arts and ScienceShaanxi Province and the Key Library Program of Education Department of Shaanxi Province(15JS008)
文摘Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioess-paleosol sequence at the Guchuanzhen site (GCZ). These palaeoflood SWDs were studied by field observations and laboratory analyses including concentrations of chemical elements and optically stimulated luminescence (OSL) dating. The results showed that the palaeoflood SWDs were the result of the secondary separations of the surface soil and weathered soil layers during the process of water transport and deposition, and without obvious weathering during soil development. These extraordinary flood events were dated back to 3,200-3,000 a B.P. with the OSL method and checked by archaeological dating of the human remains retrieved from the profile. These extraordinary flood events were therefore considered as regional expression of known climatic events and demonstrated the climatic instability in the Holocene. This result is important for understanding the effects of global climate change on the dynamics of river systems.
基金Acknowledgements This study is jointly supported by the National Natural Science Foundation of China (Grant Nos. 51079123 and 51379175), Program for New Century Excellent Talents in University (No. NCET-11-1045), Technology Foundation for Selected Overseas Chinese Scholar (2011 -12-09), Scientific Research Foundation for Returned Scholars (2010-1174), and Natural Science Foundation of Shaanxi Province (Grant No.12k798).
文摘Maintenance of the ecosystem health of a river is of great importance for local sustainable development. On the basis of both qualitative and quantitative analysis of the influence of natural variations and human activities on the ecosystem function of the Weihe River, the changes in major factors affecting its ecosystem health are deter- mined, which include: 1) Deficiency of environment flow: since the 1960s, the incoming stream flow shows an obvious decreasing tendency. Even in the low flow period, 80% of the water in the stream is impounded by dams for agriculture irrigation in the Baoji district. As a result, the water flow maintained in the stream for environmental use is very limited. 2) Deterioration of water quality: the concentrations of typical pollutants like Chemical Oxygen Demand (COD) and NH3-N are higher than their maximum values of the Chinese environmental quality standard. Very few fish species can survive in the River. 3) Deformation of water channels: the continuous channel sedimentation has resulted in the decrease in stream gradient, shrinkage of riverbed and the decline in the capability for flood discharge. 4) Loss of riparian vegetation: most riparian land has been occupied by urban construction activities, which have caused the loss of riparian vegetation and biodiversity and further weakened flood control and water purification functions.