The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze R...The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.展开更多
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations ...In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.展开更多
An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) mod...An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.展开更多
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents...Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.展开更多
Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing ...Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing trends of surface water resources, climate and frozen ground and reveals their causes. Results show that there exist frequent fluctuations from high to low water flow in the 51-year period. In general, the discharge has shown a de- clining trend in the 51 years especially since the 1990s. The annual distribution shows one peak which, year on year is getting smaller. (1) Precipitation has a significant and sustained influence on discharge. (2) A sharp rise of temperature resulted in the increase of evaporation and the decrease of discharge, which has a greater effect than on ice-snow melting. (3) Frozen ground tends to be degraded markedly. There is a significant positive correlation be- tween the permafrost thickness and the discharge. (4) Evaporation rates are significantly increasing, leading to the decrease of discharge. 70% of the discharge reduction resulted from climate change, and the remaining 30% may have been caused by human activities.展开更多
In this paper, variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data, as well as the impact data set (version 2.0) published by the N...In this paper, variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data, as well as the impact data set (version 2.0) published by the National Climate Center in November 2009. The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years, especially after 2004. The trend was very clearly shown, and there were quasi-periods of 9 years and 22 years, where the Tibetan Plateau heating field enhanced the effect, and the plateau monsoon entered a strong period. Precipitation notably increased, and glacier melt water increased due to climate change, all of which are the main climatic causes for increases in water resources in the source region. Based on global climate model prediction, in the SRESA1B climate change scenarios, water resources are likely to increase in this region for the next 20 years.展开更多
As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nut...As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nutrients in this area. Based on danish hydraulic institute (DHI)'s open platform Ecolab, a hydrodynamic and water quality model was developed for the Yangtze River Estuary, in which the transport and transformation processes of different forms of N/P nutrients were considered. Validations against measured data show that the model is overall reliable. Preliminary application of the model suggests that the model can simulate the characteristics of high phosphorus concentration area in the Yangtze River Estuary, and the high concentration area is closely related to the resuspension process of particulate phosphorus.展开更多
Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above norm...Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above normal after 2002;in recent decades there has been rapid warming of surface air,moistening and wind speed decrease.To investigate the influences of recent climatic changes on the water budget,this study simulates the surface water budget at CMA stations within and surrounding the source region during 1960-2006,using an improved land surface model.Results indicate that the spatial pattern of precipitation change is an important factor(except for precipitation amount and intensity) in determining the response of runoff to precipitation changes.Low runoff in the 1990s was consistent with precipitation amount and intensity.The recovery of precipitation after 2002 is mainly from increased precipitation in the dry area of the source region.Evaporation was mainly limited by water availability in this dry area,and thus most of the precipitation increase was evaporated.By contrast,energy availability was a more important influence on evaporation in the wet area.There was more evaporation in the wet area because of rapid warming,although precipitation amount partly decreased and partly increased,contributing to the reduction of runoff after 2002.This control on evaporation and its response,together with the modified spatial pattern of precipitation,produced a water budget unfavorable for runoff generation in the source region during recent years.展开更多
Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteri...Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.展开更多
The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are t...The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly;moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.展开更多
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Liji...Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.展开更多
Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control ...Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.展开更多
Ecological protection and high-quality development of the Yellow River basin are becoming part of the national strategy in recent years.The Yellow River Estuary has been seriously affected by human activities.Especial...Ecological protection and high-quality development of the Yellow River basin are becoming part of the national strategy in recent years.The Yellow River Estuary has been seriously affected by human activities.Especially,it has been severely polluted by the nitrogen and phosphorus from land sources,which have caused serious eutrophication and harmful algal blooms.Nutrient criteria,however,was not developed for the Yellow River Estuary,which hindered nutrient management measures and eutrophication risk assessment in this key ecological function zone of China.Based on field data during 2004-2019,we adopted the frequency distribution method,correlation analysis,Linear Regression Model(LRM),Classification and Regression Tree(CART)and Nonparametric Changepoint Analysis(nCPA)methods to establish the nutrient criteria for the adjacent waters of Yellow River Estuary.The water quality criteria of dissolved inorganic nitrogen(DIN)and soluble reactive phosphorus(SRP)are recommended as 244.0μg L^(−1) and 22.4μg L^(−1),respectively.It is hoped that the results will provide scientific basis for the formulation of nutrient standards in this important estuary of China.展开更多
Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south...Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south. And the water quality of the Luanhe River is the best, the proportion of I - III is about 60%, and the water quality of the Tuhaimajia River is the worst, the proportion of >V exceeds 60%. According to the trend of water quality change, the improvement of Shandong Province in Tuhaimajia River system is the most obvious, and proportion of >V water decreased from 100% to about 30%.展开更多
The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration ...The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.展开更多
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta...Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.展开更多
It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This st...The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This study was motivated by the need to investigate and understand the response of surface water quality to land use land cover (LULC) change due to urbanization. Water samples, collected at 9 sampling sites from 2006 to 2017, were analyzed for water quality using the weighted arithmetic water quality index and trend using the Mann-Kendall statistics. LULC change is detected and analyzed in ERDAS Imagine 2014 and ArcGIS 10.4 using 2006 Landsat 5 TM and 2017 Landsat 8 OLI imageries. The relationship between LULC change and water quality was performed with multiple regression analysis and Pearson correlation. The results reveal that Built-up area, Grassland and surface water increased by 5.48%, 13.34% and 0.03% respectively while Agricultural land and Forest Land decreased by <span style="white-space:nowrap;">−</span>13.41% and <span style="white-space:nowrap;">−</span>5.42% respectively. The water quality index ranged from 43.04 to 110.40 in 2006 and from 170 to 430 in 2017 indicating a deterioration in the quality of surface water from good to unsuitable for drinking at all the sampled sites. Built-up/bare lands exhibited a significant positive correlation with EC (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), turbidity (<em>R<sup>2</sup></em><sup> </sup>= 0.69, p ≤ 0.05), TDS (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), Cl (<em>R<sup>2</sup></em> = 0.62, p ≤ 0.05) and a significant negative correlation with NH<sub>4</sub> (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.729, p ≤ 0.05). Agriculture exhibited a significant positive correlation with turbidity (<em>R<sup>2</sup></em> = 0.71, p ≤ 0.01) and Fe (<em>R<sup>2</sup></em> = 0.75, p ≤ 0.01. Forest cover correlated negatively with most of the water quality parameters apart from Fe, DO, NO<sub>3</sub> but was not statistically significant. Grassland had a significant negative correlation with temperature (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.68, p ≤ 0.05). Clearly, urbanization has made a disproportionately strong contribution to the deterioration of surface water quality indicating that intensive anthropogenic activities exacerbate water quality degradation. These results provide essential information for land use planners and water managers towards sustainable and equitable management of limited water resources.展开更多
ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ ...ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.展开更多
River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and...River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and river ecosystem, the continuous flow, safe river channel for water and sediment transportation, good water quality, sustainable river ecosystem and water supply capacity are regarded as symbols of the healthy Yellow River. Minimum flow, maximum flood discharging capacity, bank-full discharge, transverse slope of floodplain, water quality degree, wetlands area, aquatic ecosystem, and water supply capacity, altogether eight quantitative indicators are set as symbols of healthy Yellow River, and their corresponding standards are determined based on the analysis with historical hydrological data and observed data of 1956-2004.展开更多
基金supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2007CB411504 and 2007CB411507)the National Natural Science Foundation of China (Grant No. 40771047)
文摘The Yangtze River Source Region has an area of 137,704 km2.Its mean annual runoff of 12.52 billion m3,which was recorded by the Chumda Hydrological Station in 1961–2000,accounts for only 0.13 percent of the Yangtze River's total annual streamflow.The extensive rivers,lakes,wetlands,glaciers,snow fields,and permafrost of the Yangtze River Source Region,as well as the region's vast alpine grasslands,play a critical role in storing and regulating the flow of water not only in the upper Yangtze River watershed of Qinghai,Sichuan,the Tibet Autonomous Region (TAR) (Tibet) and Yunnan,but also throughout the entire lower Yangtze River basin.Climate change has been the dominant factor in recent fluctuation in the volume of the Yangtze River Source Region's glacier resources.The Chumda Hydrological Station on the lower Tongtian River has registered a mean annual glacial meltwater of 1.13 billion m3 for the period 1961–2000,makes up 9 percent of the total annual runoff.Glacial meltwater makes up a significant percentage of streamflow in the Yangtze River Source Region,the major rivers of the upper Yangtze River Source Region:the Togto,Dam Chu,Garchu,and Bi Chu (Bu Chu) rivers all originate at large glaciers along the Tanggula Range.Glaciers in the Yangtze River Source Region are typical continental-type glaciers with most glacial meltwater flow occurring June–August;the close correlation between June–August river flows and temperature illustrates the important role of glacial meltwater in feeding rivers.Glaciers in the source region have undergone a long period of rapid ablation beginning in 1993.Examination of flow and temperature data for the 1961–2000 period shows that the annual melting period for glacial ice,snow,and frozen ground in the Yangtze River Source Region now begins earlier because of increasing spring temperatures,resulting in the reduction of summer flood season peak runoffs;meanwhile,increased rates of glacier ablation have resulted in more uneven annual distribution of runoff in the source region.The annual glacial meltwater runoff in the Yangtze River Source Region is projected to increase by 28.5 percent by 2050 over its 1970 value with the projected temperature increase of 2℃ and a precipitation increase of 29 mm.As a critical source of surface water for agriculture on the eastern Qinghai-Tibet Plateau and beyond,the mass retreat of glaciers in the Yangtze River Source Region will have enormous negative impacts on farming and livestock-raising ac-tivities in upper Yangtze River watershed,as well as on the viability of present ecosystems and even socioeconomic development in the upper Yangtze River Basin.
基金supported by the National Basic Research Program of China under Grants 2010CB951001 and 2010CB428403the National Natural Science Foundation of China under Grant 41075062the R&D Special Fund for Public Welfare Industry (Meteorology) under Grant GYHY201006037
文摘In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin.
基金Funded by the Natural Science Foundation of China (No. 59778021)
文摘An effective approach for describing complicated water quality processes is very important for river water quality management. We built two artificial neural network(ANN) models,a feed-forward back-propagation(BP) model and a radial basis function(RBF) model,to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of Chongqing,P. R. China. Our models used the historical monitoring data of biological oxygen demand,dissolved oxygen,ammonia,oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the Yangtze River. Of the two ANN models,the RBF model calculates with a smaller mean error,but a larger root mean square error. More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality models.
基金funded by the Global Change Research Program of China (2010CB951401)the National Natural Science Foundation of China (41030638, 41121001, 41030527,41130641,and 41201025)the One Hundred Talents Program of the Chinese Academy of Sciences
文摘Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.
基金National Natural Science Foundation of China, No.40405022Special Fund for Social Public Welfare of Research Institutes, No.2005DIB3J109
文摘Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing trends of surface water resources, climate and frozen ground and reveals their causes. Results show that there exist frequent fluctuations from high to low water flow in the 51-year period. In general, the discharge has shown a de- clining trend in the 51 years especially since the 1990s. The annual distribution shows one peak which, year on year is getting smaller. (1) Precipitation has a significant and sustained influence on discharge. (2) A sharp rise of temperature resulted in the increase of evaporation and the decrease of discharge, which has a greater effect than on ice-snow melting. (3) Frozen ground tends to be degraded markedly. There is a significant positive correlation be- tween the permafrost thickness and the discharge. (4) Evaporation rates are significantly increasing, leading to the decrease of discharge. 70% of the discharge reduction resulted from climate change, and the remaining 30% may have been caused by human activities.
文摘In this paper, variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data, as well as the impact data set (version 2.0) published by the National Climate Center in November 2009. The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years, especially after 2004. The trend was very clearly shown, and there were quasi-periods of 9 years and 22 years, where the Tibetan Plateau heating field enhanced the effect, and the plateau monsoon entered a strong period. Precipitation notably increased, and glacier melt water increased due to climate change, all of which are the main climatic causes for increases in water resources in the source region. Based on global climate model prediction, in the SRESA1B climate change scenarios, water resources are likely to increase in this region for the next 20 years.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.10972134,11032007)the Scienti-fic research project of Shanghai Municipal Oceanic Bureau(Grant Nos.2011-06,2014-01)the Shanghai Scientific Research Project(Grant Nos.13231203600,14231200104)
文摘As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nutrients in this area. Based on danish hydraulic institute (DHI)'s open platform Ecolab, a hydrodynamic and water quality model was developed for the Yangtze River Estuary, in which the transport and transformation processes of different forms of N/P nutrients were considered. Validations against measured data show that the model is overall reliable. Preliminary application of the model suggests that the model can simulate the characteristics of high phosphorus concentration area in the Yangtze River Estuary, and the high concentration area is closely related to the resuspension process of particulate phosphorus.
基金supported by the National Basic Research Program of China (2009CB421405)
文摘Discharge in the source region of the Yellow River significantly declined after 1990.China Meteorological Administration(CMA) data show that precipitation in this region was low in the 1990s but returned to above normal after 2002;in recent decades there has been rapid warming of surface air,moistening and wind speed decrease.To investigate the influences of recent climatic changes on the water budget,this study simulates the surface water budget at CMA stations within and surrounding the source region during 1960-2006,using an improved land surface model.Results indicate that the spatial pattern of precipitation change is an important factor(except for precipitation amount and intensity) in determining the response of runoff to precipitation changes.Low runoff in the 1990s was consistent with precipitation amount and intensity.The recovery of precipitation after 2002 is mainly from increased precipitation in the dry area of the source region.Evaporation was mainly limited by water availability in this dry area,and thus most of the precipitation increase was evaporated.By contrast,energy availability was a more important influence on evaporation in the wet area.There was more evaporation in the wet area because of rapid warming,although precipitation amount partly decreased and partly increased,contributing to the reduction of runoff after 2002.This control on evaporation and its response,together with the modified spatial pattern of precipitation,produced a water budget unfavorable for runoff generation in the source region during recent years.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3200401)the National Natural Science Foundation of China(Grant Nos.52379057&52039001)。
文摘Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA23060704
文摘The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly;moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB951202)the National Natural Science Foundation of China(Nos.41376055,41030856)
文摘Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.
基金supported by Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No.U1406403)the Sea Area Use Fund of Jiangsu Province (Environmental Capacity for the Key Coast of Jiangsu Province)+1 种基金the National Natural Science Foundation of China (No.41340046)Modeling work was completed at the Computing Services Center,Ocean University of China
文摘Guan River Estuary and adjacent coastal area(GREC) suffer from serious pollution and eutrophicational problems over the recent years.Thus,reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system,including longitudinal and lateral variations in nutrient and COD concentrations,is a matter of urgency.In this study,a three-dimensional,hydrodynamic,water quality model was developed in GREC,Northern Jiangsu Province.The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid,finite-volume,free-surface,primitive equation coastal ocean circulation model(FVCOM).The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments:dissolved inorganic nitrogen,soluble reactive phosphorus(SRP),phytoplankton,zooplankton,detritus,dissolved organic nitrogen(DON),dissolved organic phosphorus(DOP),and chemical oxygen demand.The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013.A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality.The model can be used for total load control management to improve water quality in this area.
基金supported by the National Key Research and Development Program of China(No.2018YFC1407601).
文摘Ecological protection and high-quality development of the Yellow River basin are becoming part of the national strategy in recent years.The Yellow River Estuary has been seriously affected by human activities.Especially,it has been severely polluted by the nitrogen and phosphorus from land sources,which have caused serious eutrophication and harmful algal blooms.Nutrient criteria,however,was not developed for the Yellow River Estuary,which hindered nutrient management measures and eutrophication risk assessment in this key ecological function zone of China.Based on field data during 2004-2019,we adopted the frequency distribution method,correlation analysis,Linear Regression Model(LRM),Classification and Regression Tree(CART)and Nonparametric Changepoint Analysis(nCPA)methods to establish the nutrient criteria for the adjacent waters of Yellow River Estuary.The water quality criteria of dissolved inorganic nitrogen(DIN)and soluble reactive phosphorus(SRP)are recommended as 244.0μg L^(−1) and 22.4μg L^(−1),respectively.It is hoped that the results will provide scientific basis for the formulation of nutrient standards in this important estuary of China.
文摘Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south. And the water quality of the Luanhe River is the best, the proportion of I - III is about 60%, and the water quality of the Tuhaimajia River is the worst, the proportion of >V exceeds 60%. According to the trend of water quality change, the improvement of Shandong Province in Tuhaimajia River system is the most obvious, and proportion of >V water decreased from 100% to about 30%.
基金Jiangsu Suxie Academy of Environmental Technology for its support for the program"Study on the linkage system for emergency monitoring of water sources of the Yangtze River"(No.1203)~~
文摘The Yangtze River flows through Jiangsu Province, bringing abundant water resources to people in this province. However, environmental pollution and destruction of vegetation in recent years have led to deterioration of water quality of the Yangtze, bringing about many bad effects on people’s life and production. Through a comprehensive analysis of water quality of the Yangtze River through Jiangsu Province, we investigated the reasons for the deterioration of its water quality, and explored countermeasure to maintain good water quality in the Yangtze with the objective to provide safe and reliable drinking water sources for people.
基金Supported by Natural Science Foundation of Jiangsu Province,China (BK2011096)Survey of National Soil Situation and Pollution Control (GZTR20070302)
文摘Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.
文摘The Upper Chongwe River Catchment has recently been overexploited for water resources with increased complaints by various water users about the deteriorating quality of surface water within the sub-catchment. This study was motivated by the need to investigate and understand the response of surface water quality to land use land cover (LULC) change due to urbanization. Water samples, collected at 9 sampling sites from 2006 to 2017, were analyzed for water quality using the weighted arithmetic water quality index and trend using the Mann-Kendall statistics. LULC change is detected and analyzed in ERDAS Imagine 2014 and ArcGIS 10.4 using 2006 Landsat 5 TM and 2017 Landsat 8 OLI imageries. The relationship between LULC change and water quality was performed with multiple regression analysis and Pearson correlation. The results reveal that Built-up area, Grassland and surface water increased by 5.48%, 13.34% and 0.03% respectively while Agricultural land and Forest Land decreased by <span style="white-space:nowrap;">−</span>13.41% and <span style="white-space:nowrap;">−</span>5.42% respectively. The water quality index ranged from 43.04 to 110.40 in 2006 and from 170 to 430 in 2017 indicating a deterioration in the quality of surface water from good to unsuitable for drinking at all the sampled sites. Built-up/bare lands exhibited a significant positive correlation with EC (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), turbidity (<em>R<sup>2</sup></em><sup> </sup>= 0.69, p ≤ 0.05), TDS (<em>R<sup>2</sup></em> = 0.61, p ≤ 0.05), Cl (<em>R<sup>2</sup></em> = 0.62, p ≤ 0.05) and a significant negative correlation with NH<sub>4</sub> (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.729, p ≤ 0.05). Agriculture exhibited a significant positive correlation with turbidity (<em>R<sup>2</sup></em> = 0.71, p ≤ 0.01) and Fe (<em>R<sup>2</sup></em> = 0.75, p ≤ 0.01. Forest cover correlated negatively with most of the water quality parameters apart from Fe, DO, NO<sub>3</sub> but was not statistically significant. Grassland had a significant negative correlation with temperature (<em>R<sup>2</sup></em> = <span style="white-space:nowrap;">−</span>0.68, p ≤ 0.05). Clearly, urbanization has made a disproportionately strong contribution to the deterioration of surface water quality indicating that intensive anthropogenic activities exacerbate water quality degradation. These results provide essential information for land use planners and water managers towards sustainable and equitable management of limited water resources.
基金Under the auspices of the National Natural Science Foundation of China(No.49671017).
文摘ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.
基金The Technological Innovative Plan of Ministry of Water Resources, China, No.XDS2004-03
文摘River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and river ecosystem, the continuous flow, safe river channel for water and sediment transportation, good water quality, sustainable river ecosystem and water supply capacity are regarded as symbols of the healthy Yellow River. Minimum flow, maximum flood discharging capacity, bank-full discharge, transverse slope of floodplain, water quality degree, wetlands area, aquatic ecosystem, and water supply capacity, altogether eight quantitative indicators are set as symbols of healthy Yellow River, and their corresponding standards are determined based on the analysis with historical hydrological data and observed data of 1956-2004.