IPSAS was accepted by Jordan’s government in accordance with worldwide trends.The Jordanian Ministry of Finance launched cash-basis IPSAS in 2015 and planned to implement accrual accounting by January 1,2021.However,...IPSAS was accepted by Jordan’s government in accordance with worldwide trends.The Jordanian Ministry of Finance launched cash-basis IPSAS in 2015 and planned to implement accrual accounting by January 1,2021.However,the commitment to change remains uneven,hindering the full shift.Moving from old accounting processes to new ones is tough.Even then,it hasn’t been implemented,creating a gap due to the difficulty in committing to new accounting standards throughout implementation due to obstacles.Thus,knowing government accountants’issues is essential to applying IPSAS in government accounting.This study examines how transformational leadership affects government accountants’commitment to IPSAS adoption in Jordan’s public sector.This study used a quantitative approach to survey Jordanian Ministry of Finance accountants.The 384-person study had a 78%response rate.Additionally,PLS-SEM was used to confirm variable relationships.Transformational leadership positively predicted IPSAS implementation,according to the study.展开更多
The objective of this research is to examine the antecedents and consequences of cost management systems (CMS) design effectiveness of manufacturing businesses in Thailand. The effect of CMS design effectiveness on ...The objective of this research is to examine the antecedents and consequences of cost management systems (CMS) design effectiveness of manufacturing businesses in Thailand. The effect of CMS design effectiveness on cost information quality is investigated. Moreover, the effect of cost information quality on business success is investigated. Furthermore, executive management support and cost accountant competency are assumed to become the antecedents of CMS design effectiveness. Electronics manufacturing businesses in Thailand are samples of the research. A mail survey procedure via the questionnaire was used for data collection from accounting controllers. The results indicate that CMS design effectiveness has a positive significant effect on cost information quality. Moreover, cost information quality also has a positive significant effect on business success. Additionally, both executive management support and cost accountant competency have a positive significant effect on CMS design effectiveness.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
This paper describes the relation of accountant regulation and accountant behavior alienation through institutional economics. The creation and development of the accountant regulation are result that restrain account...This paper describes the relation of accountant regulation and accountant behavior alienation through institutional economics. The creation and development of the accountant regulation are result that restrain accountant behavior alienation, accountant behavior alienation is unceasing mutant after the development of accountant regulation.展开更多
The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible qualit...The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible quality of the initial road design. Factors determining the formation of water-heating mode subgrade soils are allocated, and an information database for mathematical modeling of geocomplexes is shown. Values of strength and deformability of clay soils are calculated within the limits of the defined, homogeneous road districts in Western Siberia to provide the required level of reliability of design solutions.展开更多
Forensic accountants today are required to possess a number of characteristics and skills that are derived from a range of disciplines. They must be inquisitive, able to delve into motivations, operations and justific...Forensic accountants today are required to possess a number of characteristics and skills that are derived from a range of disciplines. They must be inquisitive, able to delve into motivations, operations and justifications underlying the behavior of white collar criminals. They must be able to simplify technical accounting information and convey it effectively orally and in writing to a court or tribunal; be able to trace information via information technology tools; have an understanding of the adversarial legal system and the rules of evidence. Universities offering forensic accounting courses in various formats are on the increase. The aim of this paper is to investigate the subject areas that any course specializing in forensic accounting needs to cover.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
This study searches the reasons why accounting graduates do not want to become members of the Malaysian Institute of Accountants (MIA) and accountants. Ten participants were interviewed. An analysis of their intervi...This study searches the reasons why accounting graduates do not want to become members of the Malaysian Institute of Accountants (MIA) and accountants. Ten participants were interviewed. An analysis of their interview transcripts, using the constant comparative method, discloses the following reasons why they do not register as members: no added benefits to current employment, difficulty in filling in the application forms, high cost of membership and lack of ambition to become accountants. The findings of this study provide insights to the professional accounting bodies and academics on the accounting graduates' lack of interest to become accountants.展开更多
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an...Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.展开更多
The Article 23 in the Universal Declaration of Human Rights mentions that all work must have a fair and favorable remuneration. However, in Brazil, the State uses the free legal aid as a way of minimizing the social a...The Article 23 in the Universal Declaration of Human Rights mentions that all work must have a fair and favorable remuneration. However, in Brazil, the State uses the free legal aid as a way of minimizing the social and economic inequality, making it possible for the needy to have access to justice. Through the free legal aid, the litigant is exempted from payment of fees and legal expenses and court, thus, transferring the burden of work to professionals who assist in the judicial process. So, the magistrate can appoint an expert accountant to assist him in the trial of the legal question when the proof requires accounting knowledge. In this way, this article discusses the accounting expertise that is free of charge from the perception of expert accountants. The authors had applied questionnaires in August and September in 2008, and obtained 131 responses and 2,859 data. From this research, the authors observed that the majority of respondents when solicited to work with the possibility of non-payment attended the demand, and believed that this would contribute to society and assist the magistrate.展开更多
The main purpose of our paper is to identify and analyse the underlying stereotype attributes concerning accountant,accounting and users through cartoons.Doing so,we aim to capture insights of how this spectrum of soc...The main purpose of our paper is to identify and analyse the underlying stereotype attributes concerning accountant,accounting and users through cartoons.Doing so,we aim to capture insights of how this spectrum of society perceives actors involved on accounting issues.Our study also differs from others as our period of analysis is long,79 years,from 1925 to 2003.As we have the advantage of a long period and a popular non-professional database,we can work with multiple actors as accountant,accounting and users,instead of focusing on single one.And the richness of database also allowed splitting these main actors in 7 actors.In order to capture stereotype nuances of multiple actors from a cartoon database,we use discourse analysis method that has been used on other studies of identity but not to study accounting issues.As cartoons are composed by images and texts to give a message,it is richer to analyze discourse beyond images and texts.Our results are mainly consistent with previous studies although we found some different results when considering different periods of time as well new findings about tax actors such as taxpayers,tax agent and tax accounting.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and soci...The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.展开更多
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
文摘IPSAS was accepted by Jordan’s government in accordance with worldwide trends.The Jordanian Ministry of Finance launched cash-basis IPSAS in 2015 and planned to implement accrual accounting by January 1,2021.However,the commitment to change remains uneven,hindering the full shift.Moving from old accounting processes to new ones is tough.Even then,it hasn’t been implemented,creating a gap due to the difficulty in committing to new accounting standards throughout implementation due to obstacles.Thus,knowing government accountants’issues is essential to applying IPSAS in government accounting.This study examines how transformational leadership affects government accountants’commitment to IPSAS adoption in Jordan’s public sector.This study used a quantitative approach to survey Jordanian Ministry of Finance accountants.The 384-person study had a 78%response rate.Additionally,PLS-SEM was used to confirm variable relationships.Transformational leadership positively predicted IPSAS implementation,according to the study.
文摘The objective of this research is to examine the antecedents and consequences of cost management systems (CMS) design effectiveness of manufacturing businesses in Thailand. The effect of CMS design effectiveness on cost information quality is investigated. Moreover, the effect of cost information quality on business success is investigated. Furthermore, executive management support and cost accountant competency are assumed to become the antecedents of CMS design effectiveness. Electronics manufacturing businesses in Thailand are samples of the research. A mail survey procedure via the questionnaire was used for data collection from accounting controllers. The results indicate that CMS design effectiveness has a positive significant effect on cost information quality. Moreover, cost information quality also has a positive significant effect on business success. Additionally, both executive management support and cost accountant competency have a positive significant effect on CMS design effectiveness.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
文摘This paper describes the relation of accountant regulation and accountant behavior alienation through institutional economics. The creation and development of the accountant regulation are result that restrain accountant behavior alienation, accountant behavior alienation is unceasing mutant after the development of accountant regulation.
基金supported by a grant from Russian Foundation for Basic Research (Project No. 14-07-00673 A)
文摘The paper proposes a methodological scheme that thoroughly accounts for natural-climatic conditions which can impair the stability and longevity of transport facilities (roadways), to ensure the best possible quality of the initial road design. Factors determining the formation of water-heating mode subgrade soils are allocated, and an information database for mathematical modeling of geocomplexes is shown. Values of strength and deformability of clay soils are calculated within the limits of the defined, homogeneous road districts in Western Siberia to provide the required level of reliability of design solutions.
文摘Forensic accountants today are required to possess a number of characteristics and skills that are derived from a range of disciplines. They must be inquisitive, able to delve into motivations, operations and justifications underlying the behavior of white collar criminals. They must be able to simplify technical accounting information and convey it effectively orally and in writing to a court or tribunal; be able to trace information via information technology tools; have an understanding of the adversarial legal system and the rules of evidence. Universities offering forensic accounting courses in various formats are on the increase. The aim of this paper is to investigate the subject areas that any course specializing in forensic accounting needs to cover.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
文摘This study searches the reasons why accounting graduates do not want to become members of the Malaysian Institute of Accountants (MIA) and accountants. Ten participants were interviewed. An analysis of their interview transcripts, using the constant comparative method, discloses the following reasons why they do not register as members: no added benefits to current employment, difficulty in filling in the application forms, high cost of membership and lack of ambition to become accountants. The findings of this study provide insights to the professional accounting bodies and academics on the accounting graduates' lack of interest to become accountants.
基金This work is supported by the National Key R&D Program of China(No.2022ZD0117501)the Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic Grant by the Agency for Science,Technology and Research(A*STAR)under grant no.A1898b0043Tsinghua University Initiative Scientific Research Program and Low Carbon En-ergy Research Funding Initiative by A*STAR under grant number A-8000182-00-00.
文摘Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.
文摘The Article 23 in the Universal Declaration of Human Rights mentions that all work must have a fair and favorable remuneration. However, in Brazil, the State uses the free legal aid as a way of minimizing the social and economic inequality, making it possible for the needy to have access to justice. Through the free legal aid, the litigant is exempted from payment of fees and legal expenses and court, thus, transferring the burden of work to professionals who assist in the judicial process. So, the magistrate can appoint an expert accountant to assist him in the trial of the legal question when the proof requires accounting knowledge. In this way, this article discusses the accounting expertise that is free of charge from the perception of expert accountants. The authors had applied questionnaires in August and September in 2008, and obtained 131 responses and 2,859 data. From this research, the authors observed that the majority of respondents when solicited to work with the possibility of non-payment attended the demand, and believed that this would contribute to society and assist the magistrate.
文摘The main purpose of our paper is to identify and analyse the underlying stereotype attributes concerning accountant,accounting and users through cartoons.Doing so,we aim to capture insights of how this spectrum of society perceives actors involved on accounting issues.Our study also differs from others as our period of analysis is long,79 years,from 1925 to 2003.As we have the advantage of a long period and a popular non-professional database,we can work with multiple actors as accountant,accounting and users,instead of focusing on single one.And the richness of database also allowed splitting these main actors in 7 actors.In order to capture stereotype nuances of multiple actors from a cartoon database,we use discourse analysis method that has been used on other studies of identity but not to study accounting issues.As cartoons are composed by images and texts to give a message,it is richer to analyze discourse beyond images and texts.Our results are mainly consistent with previous studies although we found some different results when considering different periods of time as well new findings about tax actors such as taxpayers,tax agent and tax accounting.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金supported by the National Natural Science Foundation of China(Nos.52225403,U2013603,52434004,and 52404365)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)+2 种基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)the National Key Research and Development Program of China(2023YFF0615404)the Scientific Instrument Developing Project of Shenzhen University。
文摘The lunar surface and its deep layers contain abundant resources and valuable information resources,the exploration and exploitation of which are important for the sustainable development of the human economy and society.Technological exploration and research in the field of deep space science,especially lunar-based exploration,is a scientific strategy that has been pursued in China and worldwide.Drilling and sampling are key to accurate exploration of the desirable characteristics of deep lunar resources.In this study,an in-situ condition preserved coring(ICP-Coring)and analysis system,which can be used to test drilling tools and develop effective sampling strategies,was designed.The key features of the system include:(1)capability to replicate the extreme temperature fluctuations of the lunar environment(-185 to 200℃)with intelligent temperature control;(2)ability to maintain a vacuum environment at a scale of 10^(-3) Pa,both under unloaded conditions within Ф580 mm×1000 mm test chamber,and under loaded conditions using Ф400 mm×800 mm lunar rock simulant;(3)application of axial pressures up to 4 MPa and confining pressures up to 3.5 MPa;(4)sample rotation at any angle with a maximum sampling length of 800 mm;and(5)multiple modes of rotary-percussive drilling,controlled by penetration speed and weight on bit(WOB).Experimental studies on the drilling characteristics in the lunar rock simulant-loaded state under different drill bit-percussive-vacuum environment configurations were conducted.The results show that the outgassing rate of the lunar soil simulant is greater than that of the lunar rock simulant and that a low-temperature environment contributes to a reduced vacuum of the lunar-based simulated environment.The rotary-percussive drilling method effectively shortens the sampling time.With increasing sampling depth,the temperature rise of the drilling tools tends to rapidly increase,followed by slow growth or steady fluctuations.The temperature rise energy accumulation of the drill bits under vacuum is more significant than that under atmospheric pressure,approximately 1.47 times higher.The real-time monitored drilling pressure,penetration speed and rotary torque during drilling serve as parameters for discriminating the drilling status.The results of this research can provide a scientific basis for returning samples from lunar rock in extreme lunar-based environments.
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.