期刊文献+
共找到794篇文章
< 1 2 40 >
每页显示 20 50 100
Auto-Scaling Framework for Enhancing the Quality of Service in the Mobile Cloud Environments
1
作者 Yogesh Kumar Jitender Kumar Poonam Sheoran 《Computers, Materials & Continua》 SCIE EI 2023年第6期5785-5800,共16页
On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains.Mobile cloud computing is one of these domains where complex computation tasks are offloa... On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains.Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’cognitive capacity.However,the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines(VMs).Furthermore,any delays at the cloud end would further aggravate the miseries of real-time tasks.To resolve these issues,this paper proposes an auto-scaling framework(ACF)that strives to maintain the quality of service(QoS)for the end users as per the service level agreement(SLA)negotiated assurance level for service availability.In addition,it also provides an innovative solution for dealing with the VM startup overheads without truncating the running tasks.Unlike the waiting cost and service cost tradeoff-based systems or threshold-rule-based systems,it does not require strict tuning in the waiting costs or in the threshold rules for enhancing the QoS.We explored the design space of the ACF system with the CloudSim simulator.The extensive sets of experiments demonstrate the effectiveness of the ACF system in terms of good reduction in energy dissipation at the mobile devices and improvement in the QoS.At the same time,the proposed ACF system also reduces the monetary costs of the service providers. 展开更多
关键词 Auto-scaling computation offloading mobile cloud computing quality of service service level agreement
下载PDF
Edge Cloud Selection in Mobile Edge Computing(MEC)-Aided Applications for Industrial Internet of Things(IIoT)Services
2
作者 Dae-Young Kim SoYeon Lee +1 位作者 MinSeung Kim Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2049-2060,共12页
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im... In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method. 展开更多
关键词 Industrial Internet of Things(IIoT)network IIoT service mobile edge computing(MEC) edge cloud selection MEC-aided application
下载PDF
Modelling Mobile-X Architecture for Offloading in Mobile Edge Computing 被引量:1
3
作者 G.Pandiyan E.Sasikala 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期617-632,共16页
Mobile Edge Computing(MEC)assists clouds to handle enormous tasks from mobile devices in close proximity.The edge servers are not allocated efficiently according to the dynamic nature of the network.It leads to process... Mobile Edge Computing(MEC)assists clouds to handle enormous tasks from mobile devices in close proximity.The edge servers are not allocated efficiently according to the dynamic nature of the network.It leads to processing delay,and the tasks are dropped due to time limitations.The researchersfind it difficult and complex to determine the offloading decision because of uncertain load dynamic condition over the edge nodes.The challenge relies on the offload-ing decision on selection of edge nodes for offloading in a centralized manner.This study focuses on minimizing task-processing time while simultaneously increasing the success rate of service provided by edge servers.Initially,a task-offloading problem needs to be formulated based on the communication and pro-cessing.Then offloading decision problem is solved by deep analysis on taskflow in the network and feedback from the devices on edge services.The significance of the model is improved with the modelling of Deep Mobile-X architecture and bi-directional Long Short Term Memory(b-LSTM).The simulation is done in the Edgecloudsim environment,and the outcomes show the significance of the proposed idea.The processing time of the anticipated model is 6.6 s.The following perfor-mance metrics,improved server utilization,the ratio of the dropped task,and number of offloading tasks are evaluated and compared with existing learning approaches.The proposed model shows a better trade-off compared to existing approaches. 展开更多
关键词 mobile edge computing cloud offloading delay task drop reinforcement learning mobile-X architecture
下载PDF
Fuzzy Firefly Based Intelligent Algorithm for Load Balancing inMobile Cloud Computing
4
作者 Poonam Suman Sangwan 《Computers, Materials & Continua》 SCIE EI 2023年第1期1783-1799,共17页
This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits ... This paper presents a novel fuzzy firefly-based intelligent algorithm for load balancing in mobile cloud computing while reducing makespan.The proposed technique implicitly acts intelligently by using inherent traits of fuzzy and firefly.It automatically adjusts its behavior or converges depending on the information gathered during the search process and objective function.It works for 3-tier architecture,including cloudlet and public cloud.As cloudlets have limited resources,fuzzy logic is used for cloudlet selection using capacity and waiting time as input.Fuzzy provides human-like decisions without using any mathematical model.Firefly is a powerful meta-heuristic optimization technique to balance diversification and solution speed.It balances the load on cloud and cloudlet while minimizing makespan and execution time.However,it may trap in local optimum;levy flight can handle it.Hybridization of fuzzy fireflywith levy flight is a novel technique that provides reduced makespan,execution time,and Degree of imbalance while balancing the load.Simulation has been carried out on the Cloud Analyst platform with National Aeronautics and Space Administration(NASA)and Clarknet datasets.Results show that the proposed algorithm outperforms Ant Colony Optimization Queue Decision Maker(ACOQDM),Distributed Scheduling Optimization Algorithm(DSOA),andUtility-based Firefly Algorithm(UFA)when compared in terms of makespan,Degree of imbalance,and Figure of Merit. 展开更多
关键词 cloud computing cloudLET mobile cloud computing FUZZY FIREFLY load balancing MAKESPAN degree of imbalance
下载PDF
Hybrid Mobile Cloud Computing Architecture with Load Balancing for Healthcare Systems
5
作者 Ahyoung Lee Jui Mhatre +1 位作者 Rupak Kumar Das Min Hong 《Computers, Materials & Continua》 SCIE EI 2023年第1期435-452,共18页
Healthcare is a fundamental part of every individual’s life.The healthcare industry is developing very rapidly with the help of advanced technologies.Many researchers are trying to build cloud-based healthcare applic... Healthcare is a fundamental part of every individual’s life.The healthcare industry is developing very rapidly with the help of advanced technologies.Many researchers are trying to build cloud-based healthcare applications that can be accessed by healthcare professionals from their premises,as well as by patients from their mobile devices through communication interfaces.These systems promote reliable and remote interactions between patients and healthcare professionals.However,there are several limitations to these innovative cloud computing-based systems,namely network availability,latency,battery life and resource availability.We propose a hybrid mobile cloud computing(HMCC)architecture to address these challenges.Furthermore,we also evaluate the performance of heuristic and dynamic machine learning based task scheduling and load balancing algorithms on our proposed architecture.We compare them,to identify the strengths and weaknesses of each algorithm;and provide their comparative results,to show latency and energy consumption performance.Challenging issues for cloudbased healthcare systems are discussed in detail. 展开更多
关键词 mobile cloud computing hybrid mobile cloud computing load balancing healthcare solution
下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:24
6
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
下载PDF
A Survey of Mobile Cloud Computing 被引量:7
7
作者 Xiaopeng Fan Jiannong Cao Haixia Mao 《ZTE Communications》 2011年第1期4-8,共5页
Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobi... Mobile Cloud Computing (MCC) is emerging as one of the most important branches of cloud computing. In this paper, MCC is defined as cloud computing extended by mobility, and a new ad-hoc infrastructure based on mobile devices. It provides mobile users with data storage and processing services on a cloud computing platform. Because mobile cloud computing is still in its infancy we aim to clarify confusion that has arisen from different views. Existing works are reviewed, and an overview of recent advances in mobile cloud computing is provided. We investigate representative infrastructures of mobile cloud computing and analyze key components. Moreover, emerging MCC models and services are discussed, and challenging issues are identified that will need to be addressed in future work. 展开更多
关键词 mobile cloud computing cloud computing
下载PDF
Survey on Three Components of Mobile Cloud Computing: Offloading, Distribution and Privacy 被引量:2
8
作者 Anirudh Paranjothi Mohammad S. Khan Mais Nijim 《Journal of Computer and Communications》 2017年第6期1-31,共31页
Mobile Cloud Computing (MCC) brings rich computational resource to mobile users, network operators, and cloud computing providers. It can be represented in many ways, and the ultimate goal of MCC is to enable executio... Mobile Cloud Computing (MCC) brings rich computational resource to mobile users, network operators, and cloud computing providers. It can be represented in many ways, and the ultimate goal of MCC is to enable execution of rich mobile application with rich user experience. Mobility is one of the main characteristics of MCC environment where user can be able to continue their work regardless of movement. This literature review paper presents the state-of-the-art survey of MCC. Also, we provide the communication architecture of MCC and taxonomy of mobile cloud in which specifically concentrates on offloading, mobile distribution computing, and privacy. Through an extensive literature review, we found that MCC is a technologically beneficial and expedient paradigm for virtual environments in terms of virtual servers in a distributed environment, multi-tenant architecture and data storing in a cloud. We further identified the drawbacks in offloading, mobile distribution computing, privacy of MCC and how this technology can be used in an effective way. 展开更多
关键词 cloud computing mobile cloud computing ofFLOADING DISTRIBUTION and PRIVACY
下载PDF
Adaptive Application Offloading Decision and Transmission Scheduling for Mobile Cloud Computing 被引量:6
9
作者 Junyi Wang Jie Peng +2 位作者 Yanheng Wei Didi Liu Jielin Fu 《China Communications》 SCIE CSCD 2017年第3期169-181,共13页
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off... Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations. 展开更多
关键词 mobile cloud computing application offloading decision transmission scheduling scheme Lyapunov optimization
下载PDF
Efficient Hierarchical Multi-Server Authentication Protocol for Mobile Cloud Computing
10
作者 Jiangheng Kou Mingxing He +2 位作者 Ling Xiong Zihang Ge Guangmin Xie 《Computers, Materials & Continua》 SCIE EI 2020年第7期297-312,共16页
With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-se... With the development of communication technologies,various mobile devices and different types of mobile services became available.The emergence of these services has brought great convenience to our lives.The multi-server architecture authentication protocols for mobile cloud computing were proposed to ensure the security and availability between mobile devices and mobile services.However,most of the protocols did not consider the case of hierarchical authentication.In the existing protocol,when a mobile user once registered at the registration center,he/she can successfully authenticate with all mobile service providers that are registered at the registration center,but real application scenarios are not like this.For some specific scenarios,some mobile service providers want to provide service only for particular users.For this reason,we propose a new hierarchical multi-server authentication protocol for mobile cloud computing.The proposed protocol ensures only particular types of users can successfully authenticate with certain types of mobile service providers.The proposed protocol reduces computing and communication costs by up to 42.6%and 54.2%compared to two superior protocols.The proposed protocol can also resist the attacks known so far. 展开更多
关键词 Multi-server authentication CRYPTOGRAPHY hierarchical authentication mobile cloud computing
下载PDF
Resource Load Prediction of Internet of Vehicles Mobile Cloud Computing
11
作者 Wenbin Bi Fang Yu +1 位作者 Ning Cao Russell Higgs 《Computers, Materials & Continua》 SCIE EI 2022年第10期165-180,共16页
Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study... Load-time series data in mobile cloud computing of Internet of Vehicles(IoV)usually have linear and nonlinear composite characteristics.In order to accurately describe the dynamic change trend of such loads,this study designs a load prediction method by using the resource scheduling model for mobile cloud computing of IoV.Firstly,a chaotic analysis algorithm is implemented to process the load-time series,while some learning samples of load prediction are constructed.Secondly,a support vector machine(SVM)is used to establish a load prediction model,and an improved artificial bee colony(IABC)function is designed to enhance the learning ability of the SVM.Finally,a CloudSim simulation platform is created to select the perminute CPU load history data in the mobile cloud computing system,which is composed of 50 vehicles as the data set;and a comparison experiment is conducted by using a grey model,a back propagation neural network,a radial basis function(RBF)neural network and a RBF kernel function of SVM.As shown in the experimental results,the prediction accuracy of the method proposed in this study is significantly higher than other models,with a significantly reduced real-time prediction error for resource loading in mobile cloud environments.Compared with single-prediction models,the prediction method proposed can build up multidimensional time series in capturing complex load time series,fit and describe the load change trends,approximate the load time variability more precisely,and deliver strong generalization ability to load prediction models for mobile cloud computing resources. 展开更多
关键词 Internet of Vehicles mobile cloud computing resource load predicting multi distributed resource computing scheduling chaos analysis algorithm improved artificial bee colony function
下载PDF
Editorial: When the Cloud Computing Becomes Mobile!
12
作者 Al-Sakib Khan Pathan 《International Journal of Internet and Distributed Systems》 2013年第3期17-17,共1页
Editorial: When the Cloud Computing Becomes Mobile!
关键词 cloud computing mobile
下载PDF
Research on Architecture of Campus Mobile Library System based on Cloud Computing
13
作者 Yingpei Wang 《International Journal of Technology Management》 2013年第1期109-111,共3页
Through analysis of cloud computing and characteristics, the paper described cloud computing infrastructure architecture. Mainly discusses cloud computing advantages in the use of the library and the use should pay at... Through analysis of cloud computing and characteristics, the paper described cloud computing infrastructure architecture. Mainly discusses cloud computing advantages in the use of the library and the use should pay attention to the problem, on this basis, we propose a cloud- based library information platform construction model to analyze the basic architecture of cloud computing, cloud-depth study calculated at the library information platform and database access patterns operating mode, and cloud computing future development and application prospects. 展开更多
关键词 cloud computing mobile library information platform
下载PDF
On Cost Aware Cloudlet Placement for Mobile Edge Computing 被引量:5
14
作者 Qiang Fan Nirwan Ansari 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期926-937,共12页
As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although ... As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although some research works focus on allocating workloads among cloudlets,the cloudlet placement aiming to minimize the deployment cost(i.e.,consisting of both the cloudlet cost and average E2E delay cost)has not been addressed effectively so far.The locations and number of cloudlets have a crucial impact on both the cloudlet cost in the network and average E2E delay of users.Therefore,in this paper,we propose the Cost Aware cloudlet PlAcement in moBiLe Edge computing(CAPABLE)strategy,where both the cloudlet cost and average E2E delay are considered in the cloudlet placement.To solve this problem,a Lagrangian heuristic algorithm is developed to achieve the suboptimal solution.After cloudlets are placed in the network,we also design a workload allocation scheme to minimize the E2E delay between users and their cloudlets by considering the user mobility.The performance of CAPABLE has been validated by extensive simulations. 展开更多
关键词 cloudLET PLACEMENT mobile cloud computing mobile EDGE computing
下载PDF
Research on Mobile Internet Mobile Agent System Dynamic Trust Model for Cloud Computing 被引量:5
15
作者 Weijin Jiang Yang Wang +3 位作者 Yirong Jiang Jiahui Chen Yuhui Xu Lina Tan 《China Communications》 SCIE CSCD 2019年第7期174-194,共21页
This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the per... This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large. 展开更多
关键词 mobile internet cloud computing mobile agent system SUBJECTIVE TRUST dynamic TRUST management
下载PDF
Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing 被引量:6
16
作者 Jingming Xia Peng Wang +1 位作者 Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2022年第4期244-256,共13页
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o... This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity. 展开更多
关键词 mobile edge computing MULTI-UAV collaborative cloud and edge computing deep neural network differential evolution
下载PDF
Joint Resource Allocation Using Evolutionary Algorithms in Heterogeneous Mobile Cloud Computing Networks 被引量:10
17
作者 Weiwei Xia Lianfeng Shen 《China Communications》 SCIE CSCD 2018年第8期189-204,共16页
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ... The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing. 展开更多
关键词 heterogeneous mobile cloud computing networks resource allocation genetic algorithm ant colony optimization quantum genetic algorithm
下载PDF
"Smart Cafe": A Mobile Local Computing System Based On Indoor Virtual Cloud 被引量:2
18
作者 PU Lingjun XU Jingdong YU Bowen ZHANG Jianzhong 《China Communications》 SCIE CSCD 2014年第4期38-49,共12页
With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many p... With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application. 展开更多
关键词 mobile local computing system application partition dynamic offloading strategy virtual cloud model social scheduling
下载PDF
Building a Platform to Bridge Low End Mobile Phones and Cloud Computing Services 被引量:2
19
作者 Fung Po Tso 《ZTE Communications》 2011年第1期22-26,共5页
Two waves of technology are dramatically changing daily life: cloud computing and mobile phones. New cloud computing services such as webmail and content rich data search have emerged. However, in order to use these ... Two waves of technology are dramatically changing daily life: cloud computing and mobile phones. New cloud computing services such as webmail and content rich data search have emerged. However, in order to use these services, a mobile phone must be able to run new applications and handle high network bandwidth. Worldwide, about 3.45 billion mobile phones are low end phones; they have low bandwidth and cannot run new applications. Because of this technology gap, most mobile users are unable to experience cloud computing services with their thumbs. In this paper, a novel platform, Thumb-in-Cloud, is proposed to bridge this gap. Thumb-in-Cloud consists of two subsystems: Thumb-Machine and Thumb-Gateways. Thumb-Machine is a virtual machine built into a low end phone to enable it to run new applications. Thumb-Gateways can tailor cloud computing services by reformatting and compressing the service to fit the phone ' s profile. 展开更多
关键词 mobile cloud computing low end mobile phone mobile OS MIDDLEWARE
下载PDF
Mobile Internet Mobile Agent System Dynamic Trust Model for Cloud Computing 被引量:1
20
作者 Weijin Jiang Yang Wang +4 位作者 Yirong Jiang Yuhui Xu Jiahui Chen Lina Tan Guo Liang 《Computers, Materials & Continua》 SCIE EI 2020年第1期123-136,共14页
In mobile cloud computing,trust is a very important parameter in mobile cloud computing security because data storage and data processing are performed remotely in the cloud.Aiming at the security and trust management... In mobile cloud computing,trust is a very important parameter in mobile cloud computing security because data storage and data processing are performed remotely in the cloud.Aiming at the security and trust management of mobile agent system in mobile cloud computing environment,the Human Trust Mechanism(HTM)is used to study the subjective trust formation,trust propagation and trust evolution law,and the subjective trust dynamic management algorithm(MASTM)is proposed.Based on the interaction experience between the mobile agent and the execution host and the third-party recommendation information to collect the basic trust data,the public trust host selection algorithm is given.The isolated malicious host algorithm and the integrated trust degree calculation algorithm realize the function of selecting the trusted cluster and isolating the malicious host,so as to enhance the security interaction between the mobile agent and the host.Given algorithm simulation and verification were carried out to prove its feasibility and effectiveness. 展开更多
关键词 cloud computing mobile agent system subjective trust objective trust dynamic trust management mobile Internet
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部