In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are usi...In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.展开更多
The global phase portrait describes the qualitative behaviour of the solution set of a nonlinear ordinary differential equation, for all time. In general, this is as close as we can come to solving nonlinear systems. ...The global phase portrait describes the qualitative behaviour of the solution set of a nonlinear ordinary differential equation, for all time. In general, this is as close as we can come to solving nonlinear systems. In this research work we study the dynamics of a bead sliding on a wire with a given specified shape. A long wire is bent into the shape of a curve with equation z = f (x) in a fixed vertical plane. We consider two cases, namely without friction and with friction, specifically for the cubic shape f (x) = x3−x . We derive the corresponding differential equation of motion representing the dynamics of the bead. We then study the resulting second order nonlinear ordinary differential equations, by performing simulations using MathCAD 14. Our main interest is to investigate the existence of periodic solutions for this dynamics in the neighbourhood of the critical points. Our results show clearly that periodic solutions do indeed exist for the frictionless case, as the phase portraits exhibit isolated limit cycles in the phase plane. For the case with friction, the phase portrait depicts a spiral sink, spiraling into the critical point.展开更多
文摘In this paper, we define some new sets of non-elementary functions in a group of solutions x(t) that are sine and cosine to the upper limit of integration in a non-elementary integral that can be arbitrary. We are using Abel’s methods, described by Armitage and Eberlein. The key is to start with a non-elementary integral function, differentiating and inverting, and then define a set of three functions that belong together. Differentiating these functions twice gives second-order nonlinear ODEs that have the defined set of functions as solutions. We will study some of the second-order nonlinear ODEs, especially those that exhibit limit cycles. Using the methods described in this paper, it is possible to define many other sets of non-elementary functions that are giving solutions to some second-order nonlinear autonomous ODEs.
文摘The global phase portrait describes the qualitative behaviour of the solution set of a nonlinear ordinary differential equation, for all time. In general, this is as close as we can come to solving nonlinear systems. In this research work we study the dynamics of a bead sliding on a wire with a given specified shape. A long wire is bent into the shape of a curve with equation z = f (x) in a fixed vertical plane. We consider two cases, namely without friction and with friction, specifically for the cubic shape f (x) = x3−x . We derive the corresponding differential equation of motion representing the dynamics of the bead. We then study the resulting second order nonlinear ordinary differential equations, by performing simulations using MathCAD 14. Our main interest is to investigate the existence of periodic solutions for this dynamics in the neighbourhood of the critical points. Our results show clearly that periodic solutions do indeed exist for the frictionless case, as the phase portraits exhibit isolated limit cycles in the phase plane. For the case with friction, the phase portrait depicts a spiral sink, spiraling into the critical point.