Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation ...The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation sandstones in the Huanling area.The data obtained play an important role in deducing the provenance and tectonic setting of the source rocks.The results show that the lower part of the Zhiluo Formation is mainly composed of felsic sedimentary rocks.The source rocks originated from a continental island arc environment in terms of tectonic setting.U-Pb ages of detrital zircons obtained can be roughly divided into three groups:170‒500 Ma,1600‒2050 Ma,and 2100‒2650 Ma.Based on the characteristics of trace elements and rare earth elements(REE)and the zircon U-Pb dating results,it is considered that the Cryptozoic Edo provenance of the Zhiluo Formation mainly includes magmatic rocks(such as granodioritic intrusions)and metamorphic rocks(such as gneiss and granulite)in the orogenic belts on the northern margin of the North China Plate and in the Alxa Block.Based on sedimentological and petrological results,it can be concluded that the provenance of clastic sediments in the Zhiluo Formation was in north-south direction.The preconcentration of uranium is relatively low in the Lower Zhiluo Formation in the Huangling area.Meanwhile,the paleocurrent system in the sedimentary period is inconsistent with the ore-bearing flow field in the mineralization period,which restricts the formation of large-scale and super-large-scale uranium deposits and ore zones in the southeast Ordos Basin.The understanding of provenance directions will provide crucial references for the Jurassic prototype recovery and paleo-geomorphology of the Ordos Basin and the prediction of potential uranium reservoirs of the basin.展开更多
With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the C...With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the CAS and Japan International Cooperation Agency (JICA). Its domestic partners include the Geological Bureau of展开更多
A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous n...A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.展开更多
The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercia...The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan...Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan Formation. This work described the morphology, structures, main ore types and geochemical characteristics of this ore body in detail, and discussed the ore-forming material source, occurrence state of lithium and the formation mechanism of lithium ores to clarify the prospecting marks. In the further exploration, comprehensive evaluation of the lithium resources of known bauxite ore bodies in central Yunnan Province should be strengthened, and the exploration of hidden lithium ore bodies should be intensified in order to discover more large and super-large lithium orebodies, which will fill the gap of the national demand for lithium resources, and promote the national defense construction and new energy industry development.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit format...On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.展开更多
The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, g...The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, geochemical and geophysical data is used for quantitative measurement of the “ore forming geological anomaly unit” in this paper. The main procedures are shown as follows: (1) The geo anomalous events associated with gold mineralization are analyzed in Tongshi gold field; (2) The zonation in the concentrated heavy minerals and the stream sediment elements of ore forming geo anomaly are studied in detail; (3) The deep geological structural framework is deduced by means of the synthetic geological interpretation of gravity and magnetic information; (4) The ore controlling geo anomalies and ore anomalies are chosen as the variables of the favorable ore forming indexes that can be used for the quantitative delineation and evaluation of the potential ore forming regions.展开更多
Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. ...Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.展开更多
Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and cl...Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and close to the“African Twin Ocean Railway”,which is an important strategic position.Mozambique has abundant mineral resources and vast reserves of advantageous minerals.The natural gas reserves of Mozambique ranked second in Africa.It also has world--class scale graphite and rich iron,gold,copper,niobium-tantalum and other resources.In recent years,the mining industry in this country has been rising and attracting many foreign companies to invest,including international mining giants such as Vale,Rio Tinto and large mining enterprises of China.This paper systematically studies the mineral resources endowment,exploration and development situations of natural gas,graphite,titanium-zircon placer deposits,niobium-tantalum,gold,iron and other strategic minerals in Mozambique,comprehensively analyzes the mining investment environment and the current situation of exploration and development of Chinese enterprises in Mozambique,and replans four safeguard areas of strategic mineral resources in critical short supply.Mozambique generally has good prospects of mining investment and a stable foundation for cooperation with China.Chinese enterprises can focus on oil and natural gas,graphite,titanium,zirconium,niobium,tantalum,and iron,which complement the needs of China,expand the mining capacity cooperation,and improve the ability to secure strategic mineral resources supply.展开更多
The 'Upper Yangzi Area' includes a greater part of Guizhou Province and extensive regions of the eastern part of Sichuan Province and Yunnan Province. This area was a stable plateform with varied sedimentary e...The 'Upper Yangzi Area' includes a greater part of Guizhou Province and extensive regions of the eastern part of Sichuan Province and Yunnan Province. This area was a stable plateform with varied sedimentary environments during the Permian.A lot of carbonate strata, clastic strata, coal-bearing strata, siliceous strata, etc. deposited in this area during Permian. In this period, adapting themselves to varied environments,展开更多
Many large and super-large copper deposits have been discovered and explored in the Tibet Plateau,which makes it the most important copper resource reserve and development base in China.Based on the work of the resear...Many large and super-large copper deposits have been discovered and explored in the Tibet Plateau,which makes it the most important copper resource reserve and development base in China.Based on the work of the research team,the paper summarizes the geological characteristics of the main copper deposits in Tibet and puts forward a further prospecting direction.A series of large accumulated metal deposits or ore districts from subduction of Tethys oceanic crust to India-Asia collisionhave been discovered,such as Duolong Cu(Au)ore district and Jiama copper polymetallic deposit.The ore deposits in the Duolong ore district are located in the lowstand domain,the top of lowstand domain,and the highstand domain of the same magmatic-hydrothermal metallogenic system,and their relative positions are the indicators for related deposits in the Bangong Co-Nujiang metallogenic belt.The polycentric metallogenic model of the Jiama copper polymetallic deposit is an important inspiration for the exploration of the porphyry mineralization related to collision orogeny.Further mineral exploration in the Tibet Plateau should be focused on the continental volcanic rocks related to porphyry-epithermal deposits,orogenic gold deposits,hydrothermal Pb-Zn deposits related to nappe structures,skarn Cu(Au)and polymetallic deposits,and the Miocene W-Sn polymetallic deposits.展开更多
Uranium exploration especially in currently non-producing countries like Nigeria possesses high economic prospect. This study investigates a new uranium prospect in Mika, Northeastern Nigeria. The Mika uranium mineral...Uranium exploration especially in currently non-producing countries like Nigeria possesses high economic prospect. This study investigates a new uranium prospect in Mika, Northeastern Nigeria. The Mika uranium mineralization is located in Mika, Taraba State. Two lodes were identified and additional nine (9) trenches were added. The main lode in the west extends about 10 m, ore vein strikes 348°, inclination 42°and the strike of the lode 306°with average uranium content of 18%. The eastern trench is about 8 × 4 × 6 m which exposes a veinlet of pitchblende. From the petrography, one can deduce that the granitic host rock has suffered deformation resulting in crushing of quartz crystals and stretching of plagioclase. The uraninite and chalcedony in the late phase filled up the fractures along the crystal grain boundaries as veinlets. The laboratory gamma ray analysis of the samples showed that the secondary uranium content is 0.1%, while the primary uranium ore grade is 1.5%. Radiometric in situ measurements showed that Th and K ranges from 47.3 - 3654 ppm and 4.26% - 6.26% respectively. From the survey, a strong radiometric zone extends 800 × 35 m in an NW-SE direction and has highest radiation content of 1200 cpm against the background count rate of 30 cpm. Generally, the uranium concentrations in the ores in Mika area range from 0.03% - 0.12%. Since only the surface occurrences have been explored, the study area is a good prospect for future development when properly explored. The North-eastern Nigeria has been roughly explored by Nigeria Uranium Mining Company (NUMCO) in 1980, but no formal exploration had been followed after that, especially near the site of this article. The company (ACE Mines, Ltd) of the first author was among the few uranium mining companies approved in the list of Nigerian Geological Survey agency of Abuja in Nigeria. The authors determined the coordinates of the site in their first survey which formed the prospect area in the licence.展开更多
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金This study was funded by the project initiated by the China Geological Survey“Investigation of sandstone-type uranium deposits in the Ordos and Qaidam Basins”(DD20190119)the National Key Research and Development Project(2018YFC0604200)the Ministry of Science and Technology of the the International Geoscience Programme(IGCP675),which is a joint endeavor of UNESCO and IUGS.
文摘The newly discovered medium-scale Huangling uranium deposit is located in the Shuanlong area of the southeast Ordos Basin.This paper presents the systematic geochemical and zircon U-Pb studies on the Zhiluo Formation sandstones in the Huanling area.The data obtained play an important role in deducing the provenance and tectonic setting of the source rocks.The results show that the lower part of the Zhiluo Formation is mainly composed of felsic sedimentary rocks.The source rocks originated from a continental island arc environment in terms of tectonic setting.U-Pb ages of detrital zircons obtained can be roughly divided into three groups:170‒500 Ma,1600‒2050 Ma,and 2100‒2650 Ma.Based on the characteristics of trace elements and rare earth elements(REE)and the zircon U-Pb dating results,it is considered that the Cryptozoic Edo provenance of the Zhiluo Formation mainly includes magmatic rocks(such as granodioritic intrusions)and metamorphic rocks(such as gneiss and granulite)in the orogenic belts on the northern margin of the North China Plate and in the Alxa Block.Based on sedimentological and petrological results,it can be concluded that the provenance of clastic sediments in the Zhiluo Formation was in north-south direction.The preconcentration of uranium is relatively low in the Lower Zhiluo Formation in the Huangling area.Meanwhile,the paleocurrent system in the sedimentary period is inconsistent with the ore-bearing flow field in the mineralization period,which restricts the formation of large-scale and super-large-scale uranium deposits and ore zones in the southeast Ordos Basin.The understanding of provenance directions will provide crucial references for the Jurassic prototype recovery and paleo-geomorphology of the Ordos Basin and the prediction of potential uranium reservoirs of the basin.
文摘With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the CAS and Japan International Cooperation Agency (JICA). Its domestic partners include the Geological Bureau of
基金funded by the major research program of the of National Natural Science Foundation of China entitled Metallogenic Mechanisms and Regularity of the Lithium Ore Concentration Area in the Zabuye Salt Lake, Tibet (91962219)Science and Technology Major Project of the Tibet Autonomous Region ’s Science and Techonlogy Plan (XZ202201ZD0004G01)a geological survey project of China Geological Survey (DD20230037)。
文摘A reasonable classification of deposits holds great significance for identifying prospecting targets and deploying exploration. The world ’s keen demand for lithium resources has expedited the discovery of numerous novel lithium resources. Given the presence of varied classification criteria for lithium resources presently, this study further ascertained and classified the lithium resources according to their occurrence modes, obtaining 10 types and 5 subtypes of lithium deposits(resources) based on endogenetic and exogenetic factors. As indicated by surveys of Cenozoic exogenetic lithium deposits in China and abroad,the formation and distribution of the deposits are primarily determined by plate collision zones, their primary material sources are linked to the anatectic magmas in the deep oceanic crust, and they were formed primarily during the Miocene and Late Paleogene. The researchers ascertained that these deposits,especially those of the salt lake, geothermal, and volcanic deposit types, are formed by unique slightly acidic magmas, tend to migrate and accumulate toward low-lying areas, and display supernormal enrichment. However, the material sources of lithium deposits(resources) of the Neopaleozoic clay subtype and the deep brine type are yet to be further identified. Given the various types and complex origins of lithium deposits(resources), which were formed due to the interactions of multiple spheres, it is recommended that the mineralization of exogenetic lithium deposits(resources) be investigated by integrating tectono-geochemistry, paleoatmospheric circulation, and salinology. So far, industrialized lithium extraction is primarily achieved in lithium deposits of the salt lake, clay, and hard rock types. The lithium extraction employs different processes, with lithium extraction from salt lake-type lithium deposits proving the most energy-saving and cost-effective.
基金Petro China Scientific Research and Technology Development Project(2021DJ3101,2022-FW-041)。
文摘The global exploration investment, new oil and gas discoveries, exploration business adjustment strategies of oil companies in 2021, and future favorable exploration domains are systematically analyzed using commercial databases such as IHS and public information of oil companies. It has been found that the world oil and gas exploration situation in 2021 has continued the downturn since the outbreak of COVID-19. The investment and drilling workload decreased slightly, but the success rate of exploration wells, especially deepwater exploration wells, increased significantly, and the newly discovered reserves increased slightly compared with last year. Deep waters of the passive continental margin basins are still the leading sites for discovering conventional large and medium-sized oil and gas fields. The conventional oil and gas exploration in deep formations of onshore petroliferous basins has been keeping a good state, with tight/shale oil and gas discoveries made in Saudi Arabia, Russia, and other countries. While strengthening the exploration and development of local resources, national, international, and independent oil companies have been focusing on major overseas frontiers using their advantages, including risk exploration in deep waters and natural gas. Future favorable exploration directions in the three major frontiers, the global deep waters, deep onshore formations, and unconventional resources, have been clarified. Four suggestions are put forward for the global exploration business of Chinese oil companies: first, a farm in global deepwater frontier basins in advance through bidding at a low cost and adopt the “dual exploration model” after making large-scale discoveries;second, enter new blocks of emerging hot basins in the world through farm-in and other ways, to find large oil and gas fields quickly;third, cooperate with national oil companies of the resource host countries in the form of joint research and actively participate exploration of deep onshore formations of petroliferous basins;fourth, track tight/shale oil and gas cooperation opportunities in a few countries such as Saudi Arabia and Russia, and take advantage of mature domestic theories and technologies to farm in at an appropriate time.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
文摘Lithium ore (mineralized) bodies in the area A of central Yunnan Province belong to a sedimentary-type, which are controlled by stratum. The studied ore (mineralized) body mainly occurs in the Middle Permian Liangshan Formation. This work described the morphology, structures, main ore types and geochemical characteristics of this ore body in detail, and discussed the ore-forming material source, occurrence state of lithium and the formation mechanism of lithium ores to clarify the prospecting marks. In the further exploration, comprehensive evaluation of the lithium resources of known bauxite ore bodies in central Yunnan Province should be strengthened, and the exploration of hidden lithium ore bodies should be intensified in order to discover more large and super-large lithium orebodies, which will fill the gap of the national demand for lithium resources, and promote the national defense construction and new energy industry development.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金supported by the National High Technology Research Development Program of China (Nos. 2006AA06Z115, 2006AA06Z113)Program of Yunnan Tin Industry Group Company Ltd..
文摘On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.
文摘The geological anomaly unit method (GAUM) is a new way to delineate and evaluate ore finding targets in line with the “geological anomaly ore finding theory”. Comprehensive ore finding information from geological, geochemical and geophysical data is used for quantitative measurement of the “ore forming geological anomaly unit” in this paper. The main procedures are shown as follows: (1) The geo anomalous events associated with gold mineralization are analyzed in Tongshi gold field; (2) The zonation in the concentrated heavy minerals and the stream sediment elements of ore forming geo anomaly are studied in detail; (3) The deep geological structural framework is deduced by means of the synthetic geological interpretation of gravity and magnetic information; (4) The ore controlling geo anomalies and ore anomalies are chosen as the variables of the favorable ore forming indexes that can be used for the quantitative delineation and evaluation of the potential ore forming regions.
基金The authors would like to thank the China Geological Survey (DD20190033)National Natural Science Foundation (41804144) for the financial support,Yunnan Gold and Mineral Group Co.,Ltd. for providing the original geological information,and the reviewers for providing valuable comments.
文摘Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.
基金Supported by projects of China Geological Survey(Nos.DD20190457,DD20160119 and DD20190415).
文摘Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and close to the“African Twin Ocean Railway”,which is an important strategic position.Mozambique has abundant mineral resources and vast reserves of advantageous minerals.The natural gas reserves of Mozambique ranked second in Africa.It also has world--class scale graphite and rich iron,gold,copper,niobium-tantalum and other resources.In recent years,the mining industry in this country has been rising and attracting many foreign companies to invest,including international mining giants such as Vale,Rio Tinto and large mining enterprises of China.This paper systematically studies the mineral resources endowment,exploration and development situations of natural gas,graphite,titanium-zircon placer deposits,niobium-tantalum,gold,iron and other strategic minerals in Mozambique,comprehensively analyzes the mining investment environment and the current situation of exploration and development of Chinese enterprises in Mozambique,and replans four safeguard areas of strategic mineral resources in critical short supply.Mozambique generally has good prospects of mining investment and a stable foundation for cooperation with China.Chinese enterprises can focus on oil and natural gas,graphite,titanium,zirconium,niobium,tantalum,and iron,which complement the needs of China,expand the mining capacity cooperation,and improve the ability to secure strategic mineral resources supply.
文摘The 'Upper Yangzi Area' includes a greater part of Guizhou Province and extensive regions of the eastern part of Sichuan Province and Yunnan Province. This area was a stable plateform with varied sedimentary environments during the Permian.A lot of carbonate strata, clastic strata, coal-bearing strata, siliceous strata, etc. deposited in this area during Permian. In this period, adapting themselves to varied environments,
基金supported by the project of the China Geological Survey(DD20190167)the National Key Research and Development Program of China(2018YFC0604101,2018YFC0604106)+1 种基金the Special Funds for Basic Scientific Research of the Institute of mineral resources,Chinese Academy of Geological Sciences(kk2017)the National Natural Science Foundation of China(42002103,41902097).
文摘Many large and super-large copper deposits have been discovered and explored in the Tibet Plateau,which makes it the most important copper resource reserve and development base in China.Based on the work of the research team,the paper summarizes the geological characteristics of the main copper deposits in Tibet and puts forward a further prospecting direction.A series of large accumulated metal deposits or ore districts from subduction of Tethys oceanic crust to India-Asia collisionhave been discovered,such as Duolong Cu(Au)ore district and Jiama copper polymetallic deposit.The ore deposits in the Duolong ore district are located in the lowstand domain,the top of lowstand domain,and the highstand domain of the same magmatic-hydrothermal metallogenic system,and their relative positions are the indicators for related deposits in the Bangong Co-Nujiang metallogenic belt.The polycentric metallogenic model of the Jiama copper polymetallic deposit is an important inspiration for the exploration of the porphyry mineralization related to collision orogeny.Further mineral exploration in the Tibet Plateau should be focused on the continental volcanic rocks related to porphyry-epithermal deposits,orogenic gold deposits,hydrothermal Pb-Zn deposits related to nappe structures,skarn Cu(Au)and polymetallic deposits,and the Miocene W-Sn polymetallic deposits.
文摘Uranium exploration especially in currently non-producing countries like Nigeria possesses high economic prospect. This study investigates a new uranium prospect in Mika, Northeastern Nigeria. The Mika uranium mineralization is located in Mika, Taraba State. Two lodes were identified and additional nine (9) trenches were added. The main lode in the west extends about 10 m, ore vein strikes 348°, inclination 42°and the strike of the lode 306°with average uranium content of 18%. The eastern trench is about 8 × 4 × 6 m which exposes a veinlet of pitchblende. From the petrography, one can deduce that the granitic host rock has suffered deformation resulting in crushing of quartz crystals and stretching of plagioclase. The uraninite and chalcedony in the late phase filled up the fractures along the crystal grain boundaries as veinlets. The laboratory gamma ray analysis of the samples showed that the secondary uranium content is 0.1%, while the primary uranium ore grade is 1.5%. Radiometric in situ measurements showed that Th and K ranges from 47.3 - 3654 ppm and 4.26% - 6.26% respectively. From the survey, a strong radiometric zone extends 800 × 35 m in an NW-SE direction and has highest radiation content of 1200 cpm against the background count rate of 30 cpm. Generally, the uranium concentrations in the ores in Mika area range from 0.03% - 0.12%. Since only the surface occurrences have been explored, the study area is a good prospect for future development when properly explored. The North-eastern Nigeria has been roughly explored by Nigeria Uranium Mining Company (NUMCO) in 1980, but no formal exploration had been followed after that, especially near the site of this article. The company (ACE Mines, Ltd) of the first author was among the few uranium mining companies approved in the list of Nigerian Geological Survey agency of Abuja in Nigeria. The authors determined the coordinates of the site in their first survey which formed the prospect area in the licence.