This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to gene...This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.展开更多
Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider t...Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were dep...Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.展开更多
Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(...Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.展开更多
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en...Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).展开更多
Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,com...Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.展开更多
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect...Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.展开更多
At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.Fo...At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.For this reason,we use the basic theory and tools of Philosophy of Property System to clarify the EU’s characterization of China and accordingly propose the method of judgment and the principle of response.From this,we can get three basic cognitions of“systematic rivalry”,namely mutual exclusion of common cognition(Model A),mutual exclusion and cooperation of personality cognition(Model B),and cooperation of historical cognition(Model C).In order to steadily grasp the nature of“systematic rival”and make it operable,three basic cognitive models(AB,AC,BC,ABC,etc.)are combined,and a comprehensive judgment(ABC+model)is made to adapt to the supranational sovereignty characteristics of the EU.It is believed that the nature of“systematic rivalry”in the“trinity”refers to the main aspects of competition between China and Europe.Therefore,there are three principles for the Philosophy of Property System of“systematic rival”:first,maintain the situation of competition and cooperation;second,there is no fixed mode of competition and cooperation;and third,temporary confrontation and complementarity will lead to new competition and cooperation.展开更多
The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first...The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
Only by improving the production capacity of domestic herbal edible oil can China ensure the safety of the supply chain of the important industrial chain of vegetable edible oil in China and practice the big food conc...Only by improving the production capacity of domestic herbal edible oil can China ensure the safety of the supply chain of the important industrial chain of vegetable edible oil in China and practice the big food concept.In addition to rice,maize,and soybean for using as grain and oil,there are eight kinds of herbaceous edible oil crops in Hubei Province,including rape,peanut,sesame,sunflower,perilla(perilla seed),cotton,linen and tiger nut(Cyperus esculentus).This paper studies the main industries of herbaceous edible oil crops and their intellectual property resources in Hubei Province,and analyzes the main problems of its inheritance,innovation and high-quality development under the strategy of strengthening the country with intellectual property.Finally,it proposes the countermeasures of carrying forward and inheriting traditional knowledge and traditional culture,maintaining the biodiversity of crops,strengthening the creation of new plant varieties and breeding patents,and opening up the whole chain of intellectual property rights.展开更多
By use of the approach of complex random signal processing, the asymptotic statistical properties of the least square estimates of 2-D exponential signals are studied. In doing so it is found that the representation i...By use of the approach of complex random signal processing, the asymptotic statistical properties of the least square estimates of 2-D exponential signals are studied. In doing so it is found that the representation is considerably more intuitive, and is analytically more tractable.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This ...The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.展开更多
The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system ...The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.展开更多
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
The study explores the asymptotic consistency of the James-Stein shrinkage estimator obtained by shrinking a maximum likelihood estimator. We use Hansen’s approach to show that the James-Stein shrinkage estimator con...The study explores the asymptotic consistency of the James-Stein shrinkage estimator obtained by shrinking a maximum likelihood estimator. We use Hansen’s approach to show that the James-Stein shrinkage estimator converges asymptotically to some multivariate normal distribution with shrinkage effect values. We establish that the rate of convergence is of order and rate , hence the James-Stein shrinkage estimator is -consistent. Then visualise its consistency by studying the asymptotic behaviour using simulating plots in R for the mean squared error of the maximum likelihood estimator and the shrinkage estimator. The latter graphically shows lower mean squared error as compared to that of the maximum likelihood estimator.展开更多
基金Lisheng Liu acknowledges the support from the National Natural Science Foundation of China(No.11972267).
文摘This article proposes a modeling method for C/C-ZrC composite materials.According to the superposition of Gaussian random field,the original gray model is obtained,and the threshold segmentation method is used to generate the C-ZrC inclusion model.Finally,the fiber structure is added to construct the microstructure of the three-phase plain weave composite.The reconstructed inclusions can meet the randomness of the shape and have a uniform distribution.Using an algorithm based on asymptotic homogenization and finite element method,the equivalent thermal conductivity prediction of the microstructure finite element model was carried out,and the influence of component volume fraction on material thermal properties was explored.The sensitivity of model parameters was studied,including the size,mesh sensitivity,Gaussian complexity,and correlation length of the RVE model,and the optimal calculation model was selected.The results indicate that the volume fraction of the inclusion phase has a significant impact on the equivalent thermal conductivity of the material.As the volume fraction of carbon fiber and ZrC increases,the equivalent thermal conductivity tensor gradually decreases.This model can be used to explore the impact of materialmicrostructure on the results,and numerical simulations have studied the relationship between structure and performance,providing the possibility of designing microstructure based on performance.
文摘Reservoirs provide a variety of services with economic values across multiple sectors. As demands for reservoir services continue to grow and precipitation patterns evolve, it becomes ever more important to consider the integrated suite of values and tradeoffs that attend changes in water uses and availability. Section 316 (b) of the Clean Water Act requires that owners of certain water cooled power plants evaluate technologies and operational measures that can reduce their impacts to aquatic organisms. The studies must discuss the social costs and benefits of alternative technologies including cooling towers (79 Fed. Reg. 158, 48300 - 48439). Cooling towers achieve their effect through evaporation. This manuscript estimates the property value, recreation, and hydroelectric generation impacts that could result from the evaporative water loss associated with installing cooling towers at the McGuire Nuclear Generating Station (McGuire) located on Lake Norman, North Carolina. Although this study specifically evaluates the effects of evaporative water loss from cooling towers, its methods are applicable to estimating the economic benefits and costs of a new water user or reduced water input in any complex reservoir system that supports steam electric generation, hydroelectric generation, residential properties, recreation, irrigation, and municipal water use.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
基金supported by Stability Supports Research Project of Treasury Department(No.197801)Talent Fund of CIAE(No.219213)。
文摘Experimental scratch tests and first-principles calculations were used to investigate the adhesion property of AlCrNbSiTi high-entropy alloy(HEA)coatings on zirconium substrates.AlCrNbSiTi HEA and Cr coatings were deposited on Zr alloy substrates using multi-arc ion plating technology,and scratch tests were subsequently conducted to estimate the adhesion property of the coatings.The results indicated that Cr coatings had better adhesion strength than HEA coatings,and the HEA coatings showed brittleness.The special quasi-random structure approach was used to build HEA models,and Cr/Zr and HEA/Zr interface models were employed to investigate the cohesion between the coatings and Zr substrate using first-principles calculations.The calculated interface energies showed that the cohesion between the Cr coating and the Zr substrate was stronger than that of the HEA coating with Zr.In contrary to Al or Si in the HEA coating,Cr,Nb,and Ti atoms binded strongly with Zr substrate.Based on the calculated elastic constants,it was found that low Cr and high Al content decreased the mechanical performances of HEA coatings.Finally,this study demonstrated the utilization of a combined approach involving first-principles calculations and experimental studies for future HEA coating development.
文摘Under solvothermal conditions,six new coordination polymers(CPs)[Mn(L)(phen)(H_(2)O)]_(n)(1),[Co(L)(phen)(H_(2)O)]_(n)(2),[Cu(L)(phen)(H_(2)O)]_(n)(3),[Zn_(2)(L)_(2)(phen)2(H_(2)O)]_(n)(4),[Zn(L)(phen)]_(n)(5),and[Cd(L)(phen)2]_(n)(6)were synthesized by reactions of dicarboxylate ligand 2,2'-(1,2-phenylenebis(methylene))bis(sulfanediyl)dinobutyric acid(H_(2)L)and 1,10-phenanthroline(phen)with the corresponding metal salts.Complexes 1-6 have been structurally characterized by single-crystal X-ray diffraction analyses,elemental analysis,IR,thermogravimetric analysis,and powder X-ray diffraction.The structures of 1-6 are 1D chains,which are further connected by hydrogen bonding interac-tions to form 3D supramolecular structures.Among them,1 and 2 are isomorphic with L2-of syn-conformation,while L2-shows anti-conformation in 3-6.In addition,the solid-state photoluminescence property of 4-6 was investigated.
基金supported by the National Natural Science Foundation of China (Grant No.51805086)。
文摘Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.).
基金funded by a project entitled exploration field evaluation and target optimization of key basins in Chad and Niger(No.2019D-4308)initiated by the scientific research and technology development project of china national petroleum corporation.
文摘Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs.
基金financially supported by the National Natural Science Foundation of China(Nos.U2141205,52371002,and 52374366)the Fundamental Research Funds for the Central Universities(Nos.06109125 and 06930007)Fundamental Research Funds for the Central Universities(No.FRF-BD-23-02).
文摘Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.
基金General Project Supported by the National Social Science Fund of China:“Research on the Philosophy of Property System of Modernization of China’s National Governance System and Governance Capacity”(Project Number:20BZX025).
文摘At present,the world is undergoing accelerating changes unseen in a century.With the United States regarding China as a strategic competitor,China-EU relations have become the core of national and global governance.For this reason,we use the basic theory and tools of Philosophy of Property System to clarify the EU’s characterization of China and accordingly propose the method of judgment and the principle of response.From this,we can get three basic cognitions of“systematic rivalry”,namely mutual exclusion of common cognition(Model A),mutual exclusion and cooperation of personality cognition(Model B),and cooperation of historical cognition(Model C).In order to steadily grasp the nature of“systematic rival”and make it operable,three basic cognitive models(AB,AC,BC,ABC,etc.)are combined,and a comprehensive judgment(ABC+model)is made to adapt to the supranational sovereignty characteristics of the EU.It is believed that the nature of“systematic rivalry”in the“trinity”refers to the main aspects of competition between China and Europe.Therefore,there are three principles for the Philosophy of Property System of“systematic rival”:first,maintain the situation of competition and cooperation;second,there is no fixed mode of competition and cooperation;and third,temporary confrontation and complementarity will lead to new competition and cooperation.
文摘The band structure,DOSs,and optical properties of(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO,including dielectric function,absorption function,reflection function,and energy loss spectrum were studied by using the first-principles calculation.The calculation results indicate that(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO is a direct bandgap semiconductor with a bandgap of 1.1 eV.The Fermi surface is asymmetric and exhibits spin splitting phenomenon.The new type of dilute magnetic semiconductor(Y_(0.75)Ca_(0.25))(Cu_(0.75)Mn_(0.25))SO exhibits significant light loss around 70 eV,with light reflection gradually increasing after 30 eV,and light absorption mainly occurring around 8-30 eV.These results also provide a basis for the discovery of more types of 1111 phase new dilute magnetic semiconductors in the future.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services (2022EDA060).
文摘Only by improving the production capacity of domestic herbal edible oil can China ensure the safety of the supply chain of the important industrial chain of vegetable edible oil in China and practice the big food concept.In addition to rice,maize,and soybean for using as grain and oil,there are eight kinds of herbaceous edible oil crops in Hubei Province,including rape,peanut,sesame,sunflower,perilla(perilla seed),cotton,linen and tiger nut(Cyperus esculentus).This paper studies the main industries of herbaceous edible oil crops and their intellectual property resources in Hubei Province,and analyzes the main problems of its inheritance,innovation and high-quality development under the strategy of strengthening the country with intellectual property.Finally,it proposes the countermeasures of carrying forward and inheriting traditional knowledge and traditional culture,maintaining the biodiversity of crops,strengthening the creation of new plant varieties and breeding patents,and opening up the whole chain of intellectual property rights.
文摘By use of the approach of complex random signal processing, the asymptotic statistical properties of the least square estimates of 2-D exponential signals are studied. In doing so it is found that the representation is considerably more intuitive, and is analytically more tractable.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金The financial supports of the National Natural Science Foundation of China(Grant No.42177148)the opening fund of State Key Laboratory of Geohazard Prevention and Geo-environment Protection(Grant No.SKLGP 2023K011)Postdoctoral Research Project of Guangzhou(Grant No.20220402)are gratefully thanked.
文摘The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.
文摘The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
文摘The study explores the asymptotic consistency of the James-Stein shrinkage estimator obtained by shrinking a maximum likelihood estimator. We use Hansen’s approach to show that the James-Stein shrinkage estimator converges asymptotically to some multivariate normal distribution with shrinkage effect values. We establish that the rate of convergence is of order and rate , hence the James-Stein shrinkage estimator is -consistent. Then visualise its consistency by studying the asymptotic behaviour using simulating plots in R for the mean squared error of the maximum likelihood estimator and the shrinkage estimator. The latter graphically shows lower mean squared error as compared to that of the maximum likelihood estimator.