To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi...Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.展开更多
Enhancing forest cover is important for effective climate change mitigation.Studies suggest that drylands are promising areas for expanding forests,but conflicts arise with increased forest area and water consumption....Enhancing forest cover is important for effective climate change mitigation.Studies suggest that drylands are promising areas for expanding forests,but conflicts arise with increased forest area and water consumption.Recent tree mortality in drylands raises concerns about carbon sequestration potential in tree plantations.Using Chinese dryland tree plantations as an example,we compared their growth with natural forests.Our results suggested plantation trees grew 1.6–2.1 times faster in juvenile phases,significantly shortening time to maturity(13.5 vs.30 years)compared to natural forests,potentially stemming from simple plantation age structures.Different from natural forests,74%of trees in plantations faced growth decline,indicating a short“prime period”for carbon sequestration and even a short lifespan.Additionally,a negative relationship between evapotranspiration and tree growth was observed in tree plantations since maturity,leading to high sensitivities of trees to vapor pressure deficit and soil water.However,this was not observed in natural forests.To address this,we suggest afforestation in drylands should consider complex age structures,ensuring a longer prime period for carbon sequestration and life expectancy in tree plantations.展开更多
This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability...This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.展开更多
As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions ...As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions by reasonably evaluating the carbon sequestration capacity of wetland parks and optimizing wetland structure.In this paper,Guangzhou wetland park is taken as the research object.Through field research,the carbon sequestration potential of ecosystems at multiple levels,including forest vegetation,seedlings,and wetland ecosystems is studied,and policy recommendations are put forward for carbon sequestration in wetland systems.The results show that the annual carbon sequestration capacity of the wetland is 1296.59 t,and the annual net carbon sequestration value is 100485 yuan.Among the three regions,proportions of annual carbon sequestration of the forest vegetation plate,seedling plate,and wetland ecosystem plate account for 28.4%,41.3%,and 30.3%,respectively.展开更多
Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were co...Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were collected. Statistical analysis of SOC contents and soil properties related to organic carbon storage were performed. The provincial total topsoil SOC stock was estimated to be 0 1 Pg with an extended pool of 0 4 Pg taking soil depth of 1 m, being relatively small compared to its total land area of 101700 km 2 One quarter of this topsoil stock was found in the soils of the Taihu Lake region that occupied 1/6 of the provincial arable area. Paddy soils accounted for over 50% of this stock in terms of SOC distribution among the soil types in the province. Experimental data from experimental farms widely distributed in the province showed that SOC storage increased consistently over the last 20 years despite a previously reported decreasing tendency during the period between 1950—1970 The evidence indicated that agricultural management practices such as irrigation, straw return and rotation of upland crops with rice or wheat crops contributed significantly to the increase in SOC storage. The annual carbon sequestration rate in the soils was in the range of 0 3—3 5 tC/(hm 2·a), depending on cropping systems and other agricultural practices. Thus, the agricultural production in the province, despite the high input, could serve as one of the practical methods to mitigate the increasing air CO 2展开更多
Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation...Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups.展开更多
Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow...Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow (MP) corn (Zea mays L.) and soybean (Glycine max L.) production systems. The first trial was conducted on a Maryhill silt loam (Typic Hapludalf) at Elora, Ontario, Canada, the second on a Brookston clay loam (Typic Argiaquoll) at Woodslee, Ontario, Canada, and the third on a Thorp silt loam (Argiaquic Argialboll) at Urbana, Illinois, USA. No-tillage led to significantly higher SOC concentrations in the top 5 cm compared to MP at all 3 sites. However, NT resulted in significantly lower SOC in sub-surface soils as compared to MP at Woodslee (10-20 cm, P = 0.01) and Urbana (20-30 cm, P < 0.10). No-tillage had significantly more SOC storage than MP at the Elora site (3.3 Mg C ha-1) and at the Woodslee site (6.2 Mg C ha-1) on an equivalent mass basis (1350 Mg ha-1 soil equivalent mass). Similarly, NT had greater SOC storage than MP at the Urbana site (2.7 Mg C ha-1) on an equivalent mass basis of 675 Mg ha-1 soil. However, these differences disappeared when the entire plow layer was evaluated for both the Woodslee and Urbana sites as a result of the higher SOC concentrations in MP than in NT at depth. Using the minimum detectable difference technique, we observed that up to 1500 soil sample per tillage treatment comparison will have to be collected and analyzed for the Elora and Woodslee sites and over 40 soil samples per tillage treatment comparison for the Urbana to statistically separate significant differences in the SOC contents of sub-plow depth soils. Therefore, it is impracticable, and at the least prohibitively expensive, to detect tillage-induced differences in soil C beyond the plow layer in various soils.展开更多
The karst mountain areas of Southwest China contain barren farmland soils and suffer from nutritional and water deficiencies that affect crop productivity. Hence,it is imperative to apply suitable fertilizers to resto...The karst mountain areas of Southwest China contain barren farmland soils and suffer from nutritional and water deficiencies that affect crop productivity. Hence,it is imperative to apply suitable fertilizers to restore soil fertility and maintain crop yield. The aim of this study is to investigate the effects of mineral-organic fertilizer(MOF)made of potassic rock and organic waste on the growth of crops. For this purpose, green Chinese cabbage grown using three different fertilization methods including MOF,inorganic fertilizer(IF), and a control was evaluated. We determined soil water content, agronomic characteristics,and biomass of green Chinese cabbage in different treatments. Furthermore, surface runoff from the pot experiments and soil leachate from pot experiments were collected to determine water temperature, pH, and cation and anion concentrations. The results demonstrate thatMOF can improve the soil water-holding capacity of soil,and the basic agronomic characteristics of the cabbage treated with MOF were superior to those with IF. Using MOF can promote the increase in cabbage biomass.Additionally, the concentration of inorganic carbon(largely in the form of HCO_3^-) in surface runoff water treated by MOF was higher than the other treatments, establishing carbon sequestration potential. This work provides a novel and environmentally friendly fertilization pattern in karst areas, which will improve crop yield and also increase the carbon sequestration potential of crops.展开更多
The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and inc...The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled COsequestration and geothermal energy production from hot dry rock(HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and COsequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential COstorage capacity if supercritical COis used as the working fluid for heat extraction. The analysis suggests that the major COsequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term COsequestration capacity of EGS in which supercritical COis used as the circulation fluid.展开更多
We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harv...We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between18.27–21.922 t ha-1and the carbon stock ranged from9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area.The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes,and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2 from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.展开更多
Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecologica...Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecological program in China that was established after catastrophic flooding in the country in 1998.The goals of the NFPP are to curb the deterioration of the ecological environment,strengthen the protection and restoration of habitat to increase biodiversity,and rehabilitate natural forests to support sustainable development in forest regions.This study looked at changes in carbon sequestration in a forested area of northeast China after the inception of the NFPP.The program divides China's natural forests into three classes—commercial and two types of noneconomic forests—that are subject to management regimes prescribing varying levels of timber harvest,afforestation,and reforestation.During the 18-year period from 1998 to 2015,the total amount of carbon sequestration increased at an average annual rate of 0.04 MT C.This trend reflects a transformation of forest management practices after implementation of the NFPP that resulted in prohibited and/or restricted logging and tighter regulation of allowable harvest levels for specific areas.In documenting this trend,guidelines for more effective implementation of forestry programs such as the NFPP in other countries in the future are also suggested.展开更多
Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclea...Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclear.Therefore,we combined the datasets from long-term multisite experiments with a meta-analysis approach to quantify the potential of GM to increase the CS and reduce the CF of paddy soils in southern China.Compared with the fallow-rice practice,the GM-rice practice increased the soil C stock at a rate of 1.62 Mg CO_(2)-eq ha^(-1) yr^(-1) and reduced chemical N application by 40%with no loss in the rice yield.The total CF varied from 7.51 to 13.66 Mg CO_(2)-eq ha^(-1) yr^(-1) and was dominated by CH_(4) emissions(60.7-81.3%).GM decreased the indirect CF by 31.4%but increased the direct CH_(4) emissions by 19.6%.In the low and high CH_(4) emission scenarios,the CH_(4) emission factors of GM(EF_(gc))were 5.58 and 21.31%,respectively.The greater soil CS offset the increase in GM-derived CF in the low CH_(4) scenario,but it could not offset the CF increase in the high CH_(4) scenario.A trade-off analysis also showed that GM can simultaneously increase the CS and reduce the total CF of the rice production system when the EF_(gc) was less than 9.20%.The variation in EF_(gc) was mainly regulated by the GM application rates and water management patterns.Determining the appropriate GM application rate and drainage pattern warrant further investigation to optimize the potential of the GM-rice system to increase the CS and reduce the total CF in China.展开更多
Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evalua...Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evaluated variations of soil carbon stock in semi-arid forests in India under diff erent moisture regimes.Soil organic carbon(SOC)and soil inorganic carbon(SIC)stocks were determined in diff erent moisture regimes i.e.monsoon,post-monsoon,winter and pre-monsoon seasons at 0–10 and>10–20 cm depths.SOC stock showed signifi cant variations under different moisture regimes.The highest SOC stock was during winter(22.81 Mg C ha−1)and lowest during the monsoon season(2.34 Mg C ha−1)among all the ridge forests under study.SOC and SIC stock under diff erent moisture regimes showed signifi cant negative correlation with soil moisture(p<0.05),as a sudden increase in soil moisture after rainfall results in an increase in carbon loss due to microbial decomposition of accumulated carbon during the dry period.There was an increase in annual SOC stock and a decrease(or no change in some cases),in SIC stock at both the depths during the study period.The SOC and SIC sequestration rates were estimated as any increase/decrease in the respective stock during each successive year.SOC sequestered ranged between 0.046 and 0.741 Mg C ha−1 y−1.Similarly,SIC sequestration ranged between 0.013 and 0.023 Mg C ha−1 y−1 over all ridge forests up to 20 cm depth.The Delhi ridge forests,which accounts to 0.007%of the semi-arid regions of India,contribute 0.25–0.32%of the national potential(semi-arid region)for SOC sequestration up to 20 cm depth.The estimates of the rate of C sequestration in this study provide a realistic image of carbon dynamics under present climatic conditions of semi-arid forests,and could be used in developing a database and formulating new strategies for carbon dioxide mitigation by enhancing soil C sequestration rates.展开更多
Based on practices of CO_(2) flooding tests in China and abroad,the recovery factor of carbon dioxide capture,utilization in displacing oil and storage(CCUS-EOR)in permanent sequestration scenario has been investigate...Based on practices of CO_(2) flooding tests in China and abroad,the recovery factor of carbon dioxide capture,utilization in displacing oil and storage(CCUS-EOR)in permanent sequestration scenario has been investigated in this work.Under the background of carbon neutrality,carbon dioxide injection into geological bodies should pursue the goal of permanent sequestration for effective carbon emission reduction.Hence,CCUS-EOR is an ultimate development method for oil reservoirs to maximize oil recovery.The limit recovery factor of CCUS-EOR development mode is put forward,the connotation differences between it and ultimate recovery factor and economically reasonable recovery factor are clarified.It is concluded that limit recovery factor is achievable with mature supporting technical base for the whole process of CCUS-EOR.Based on statistics of practical data of CO_(2) flooding projects in China and abroad such as North H79 block CO_(2) flooding pilot test at small well spacing in Jilin Oilfield etc.,the empirical relationship between the oil recovery factor of miscible CO_(2) flooding and cumulative CO_(2) volume injected is obtained by regression.Combined with the concept of oil production rate multiplier of gas flooding,a reservoir engineering method calculating CO_(2) flooding recovery factor under any miscible degree is established by derivation.It is found that when the cumulative CO_(2) volume injected is 1.5 times the hydrocarbon pore volume(HCPV),the relative deviation and the absolute difference between the recovery percentage and the limit recovery factor are less than 5%and less than 2.0 percentage points respectively.The limit recovery factor of CCUS-EOR can only be approached by large pore volume(PV)injection based on the technology of expanding swept volume.It needs to be realized from three aspects:large PV injection scheme design,enhancing miscibility degree and continuously expanding swept volume of injected CO_(2).展开更多
Current production agriculture systems typically focus on yield outcomes at all costs. By shifting to best management practices based on regenerative farming principles, however, agricultural systems worldwide could m...Current production agriculture systems typically focus on yield outcomes at all costs. By shifting to best management practices based on regenerative farming principles, however, agricultural systems worldwide could maintain or even improve yields while sequestering atmospheric carbon (C) into soil organic matter (SOM). To demonstrate the effectiveness of regenerative principles at simultaneously benefiting agriculture and reducing greenhouse gasses, their C sequestration potential was examined through SOM data from 486 soil sampling locations from multiple farms throughout the coastal plains of South Carolina. These data were compared over varying multiple-year periods between 2013 and 2017 as their land management practices shifted from conventional methods to those based on the regenerative-based practice of cover cropping. The implementation of cover crops in crop rotations resulted in statistically significant mean SOM percentage increases of 0.11 (p ≤ 0.001), 0.11 (p ≤ 0.001), and 0.55 (p ≤ 0.001) for sampling sites converted into rotations utilizing cover crops for two, three, and four years, respectively. When averaged out per year for each sampling group, this results in an average of 622, 425, and 1584 lbs./acre/year of C fixed from the atmosphere and retained in the soil as organic matter. Increases were observed across all soil types sampled in the study with soil texture not significantly influencing a soils’ ability to increase soil OM or sequester atmospheric C through cover crop implementation. The calculations based on the coastal plains’ soils studied here demonstrate the promising potential of the application of regenerative farming principles to not only restore degraded biodiversity, recycle nutrients, improve farm profitability, and reduce chemical inputs, but also to sequester atmospheric C and simultaneously help reduce the effect of global climate change while creating healthy soils.展开更多
The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based...The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based on the data from the monitoring station on Banzhai subterranean stream located in Maolan National Nature Reserve of Guizhou province,the process and influence factors of KCS have been analyzed.It shows that the amount of KCS is about 353 t C per year in the catchment of Banzhai subterranean stream,and there is good linear relationship between the strength of KCS and discharge of the stream at various time scales.Therefore,how to monitor the discharge accurately is the key to the estimation of KCS.And stations with real-time monitoring function are very important for KCS calculation because of strong seasonal variability of the karst water cycle.展开更多
Carbon sequestration is one of the important ecosystem services provided by forested landscapes. Dry forests have high potential for carbon storage. However, their potential to store and sequester carbon is poorly und...Carbon sequestration is one of the important ecosystem services provided by forested landscapes. Dry forests have high potential for carbon storage. However, their potential to store and sequester carbon is poorly understood in Kenya. Moreover, past attempts to estimate carbon stock have ignored drylands ecosystem heterogeneity. This study assessed the potential of Mukogodo dryland forest-landscape in offsetting carbon dioxide through carbon sequestration and storage. Four carbon pools (above and below ground biomass, soil, dead wood and litter) were analyzed. A total of 51<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(400</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m<sup>2</sup>) sample plots were established using stratified-random sampling technique to estimate biomass across six vegetation classes in three landscape types (forest reserve, ranches and conservancies) using nested-plot design. Above ground biomass was determined using generalized multispecies model with diameter at breast height, height and wood density as variables. Below ground, soil, litter and dead wood biomass;carbon stocks and carbon dioxide equivalents (CO<sub>2eq</sub>) were estimated using secondary information. The CO<sub>2eq</sub> was multiplied by current prices of carbon trade to compute carbon sequestration value. Mean ± SE of biomass and carbon was determined across vegetation and landscape types and mean differences tested by one-way Analysis of Variance. Mean biomass and carbon was about 79.15 ± 40.22</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TB</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha</span></span></span><span style="font-size:10px;"><span style="vertical-align:super;">-</span></span><span><span><span style="font-family:;" "=""><sup>1</sup> and 37.25 ± 18.89</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">-</span>1</sup> respectively. Cumulative carbon stock was estimated at 682.08</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">-</span>1</sup>;forest reserve (251.57</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup>-1</sup>) had significantly high levels of carbon stocks compared to ranches (209.78</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>) and conservancies (220.73</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>, <i>P</i> = 0.000). Further, closed forest significantly contributed to the overall biomass and carbon stock (58%). The carbon sequestration potential was about 19.9MTCO<sub>2eq</sub> with most conservative worth of KES 39.9B (US$40M) per annum. The high carbon stock in the landscape shows the potential of dryland ecosystems as carbon sink for climate change mitigation. However, for communities to benefit from bio-carbon funds in future, sustainable landscape management and restorative measures should be practiced to enhance carbon storage and provision of other ecosystem services.</span></span></span>展开更多
Mangroves in coastal cities are under threat due to development pressures. However, mangrove ecosystems can serve as a potential carbon sink for mitigating the impacts of climate change. The main objective of this stu...Mangroves in coastal cities are under threat due to development pressures. However, mangrove ecosystems can serve as a potential carbon sink for mitigating the impacts of climate change. The main objective of this study was to estimate the carbon sequestration potential of mangroves in the Al-Qurm natural reserve, Muscat, Oman. The reserve was classified into three distinct zones and was estimated through field measurement and remote sensing techniques. The study found that each zone sequesters varying levels of carbon. The highest mean carbon stock was measured in the landward zone (20.2 ± 0.3 kg∙C/m<sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), followed by the middle zone (8.7 ± 0.4 kg∙C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) and seaward zone (5.8 ± 0.8 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), respectively. The carbon sequestration rate of the sediment range </span><span style="font-family:Verdana;">was </span><span style="font-family:;" "=""><span style="font-family:Verdana;">between 5.0 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">∙</span>year - 12.5 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">∙</span>year. Normalized difference vegetation index (NDVI) derived from above-ground biomass showed a positive relationship (r = 0.73) with biomass measured in the field. However, the average above-ground carbon was underestimated (6.3 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) than the above-ground field measurement (7.0 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">). This 0.82 km</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> of the natural reserve was estimated to sequester approximately 9512 tonnes of carbon equivalent to 0.035 Mt of CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">e. This highlights the importance of conserving this natural reserve, despite a growing demand for land use in and around the reserve for development needs.</span></span>展开更多
Seaweed has the ability to use carbon from the environment through photosynthesis to produce biomass. The aim of this study is to estimate carbon sequestration by seaweed aquaculture as a strategy for climate change m...Seaweed has the ability to use carbon from the environment through photosynthesis to produce biomass. The aim of this study is to estimate carbon sequestration by seaweed aquaculture as a strategy for climate change mitigation. The study was undertaken at Gerupuk Bay, Lombok Island, West Nusa Tenggara Province, Indonesia. Four seaweed variants, such as Kappaphycus alvarezii var. Tambalang and Maumere, K. striatum and Eucheuma denticulatum, were cultivated with long-line system for three cultivation periods, starting from July to November, 2013. Each cultivation period was taken about 45 days. Parameters including weight increasement and carbon content of seaweeds were measured every 15 days of culture for each cultivation period in order to calculate carbon sequestration rate. The results showed that E. denticulatum had the highest carbon sequestration rate and significantly different (P 〈 0.05) compared with other variants for every cultivation period. Different seaweed variants have different capacity on carbon sequestration. Optimal utilization of the potential area for seaweed aquaculture could reduce a great quantity of CO2 from the atmosphere and help to mitigate global climate change process.展开更多
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.
基金supported by the Intergovernmental International Science and Technology Innovation Cooperation Key Project of the National Key Research and Development Program of China (No.2022YFE0135100)the National Natural Science Foundation of China (No.52072171)+1 种基金the Beijing Nova Program (No.20220484057)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
基金granted by National Key Research and Development Program(No.2022YFF0801803)National Natural Science Foundation of China(No.42161144008).
文摘Enhancing forest cover is important for effective climate change mitigation.Studies suggest that drylands are promising areas for expanding forests,but conflicts arise with increased forest area and water consumption.Recent tree mortality in drylands raises concerns about carbon sequestration potential in tree plantations.Using Chinese dryland tree plantations as an example,we compared their growth with natural forests.Our results suggested plantation trees grew 1.6–2.1 times faster in juvenile phases,significantly shortening time to maturity(13.5 vs.30 years)compared to natural forests,potentially stemming from simple plantation age structures.Different from natural forests,74%of trees in plantations faced growth decline,indicating a short“prime period”for carbon sequestration and even a short lifespan.Additionally,a negative relationship between evapotranspiration and tree growth was observed in tree plantations since maturity,leading to high sensitivities of trees to vapor pressure deficit and soil water.However,this was not observed in natural forests.To address this,we suggest afforestation in drylands should consider complex age structures,ensuring a longer prime period for carbon sequestration and life expectancy in tree plantations.
文摘This study characterized the AA-01 depleted hydrocarbon reservoir in the KOKA field, Niger Delta, using a multidimensional approach. This investigation involved data validation analysis, evaluation of site suitability for CO_(2) storage, and compositional simulation of hydrocarbon components. The primary objective was to determine the initial components and behavior of the hydrocarbon system required to optimize the injection of CO_(2) and accompanying impurities, establishing a robust basis for subsequent sequestration efforts in the six wells in the depleted KOKA AA-01 reservoir. The process, simulated using industry software such as ECLIPSE, PVTi, SCAL, and Petrel, included a compositional fluid analysis to confirm the pressure volume temperature(PVT) hydrocarbon phases and components. This involved performing a material balance on the quality of the measured data and matching the initial reservoir pressure with the supplied data source. The compositional PVT analysis adopted the Peng–Robinson equation of state to model fluid flow in porous media and estimate the necessary number of phases and components to describe the system accurately. Results from this investigation indicate that the KOKA AA-01 reservoir is suitable for CO_(2)sequestration. This conclusion is based on the reservoir's good quality, evidenced by an average porosity of 0.21 and permeability of 1 111.0 mD, a measured lithological depth of 9 300 ft, and characteristic reservoir – seal properties correlated from well logs. The study confirmed that volumetric behavior predictions are directly linked to compositional behavior predictions, which are essential during reservoir initialization and data quality checks. Additionally, it highlighted that a safe design for CO_(2) storage relies on accurately representing multiphase behaviour across wide-ranging pressure–temperature–composition conditions.
文摘As the integration point of urban blue-green spaces,wetland parks play an important role in the construction of urban carbon pools.It is of great significance for achieving carbon neutrality and peak carbon emissions by reasonably evaluating the carbon sequestration capacity of wetland parks and optimizing wetland structure.In this paper,Guangzhou wetland park is taken as the research object.Through field research,the carbon sequestration potential of ecosystems at multiple levels,including forest vegetation,seedlings,and wetland ecosystems is studied,and policy recommendations are put forward for carbon sequestration in wetland systems.The results show that the annual carbon sequestration capacity of the wetland is 1296.59 t,and the annual net carbon sequestration value is 100485 yuan.Among the three regions,proportions of annual carbon sequestration of the forest vegetation plate,seedling plate,and wetland ecosystem plate account for 28.4%,41.3%,and 30.3%,respectively.
文摘Data collection of soil organic carbon(SOC) of 154 soil series of Jiangsu, China from the second provincial soil survey and of recent changes in SOC from a number of field pilot experiments across the province were collected. Statistical analysis of SOC contents and soil properties related to organic carbon storage were performed. The provincial total topsoil SOC stock was estimated to be 0 1 Pg with an extended pool of 0 4 Pg taking soil depth of 1 m, being relatively small compared to its total land area of 101700 km 2 One quarter of this topsoil stock was found in the soils of the Taihu Lake region that occupied 1/6 of the provincial arable area. Paddy soils accounted for over 50% of this stock in terms of SOC distribution among the soil types in the province. Experimental data from experimental farms widely distributed in the province showed that SOC storage increased consistently over the last 20 years despite a previously reported decreasing tendency during the period between 1950—1970 The evidence indicated that agricultural management practices such as irrigation, straw return and rotation of upland crops with rice or wheat crops contributed significantly to the increase in SOC storage. The annual carbon sequestration rate in the soils was in the range of 0 3—3 5 tC/(hm 2·a), depending on cropping systems and other agricultural practices. Thus, the agricultural production in the province, despite the high input, could serve as one of the practical methods to mitigate the increasing air CO 2
基金the Basic Work of Science and Technology,Ministry of Science and Technology,China(2014FY110200A07)
文摘Reliable prediction of soil organic carbon(SOC) density and carbon sequestration potential(CSP) plays an important role in the atmospheric carbon dioxide budget. This study evaluated temporal and spatial variation of topsoil SOC density and CSP of 21 soil groups across Hebei Province, China, using data collected during the second national soil survey in the 1980 s and during the recent soil inventory in 2010. The CSP can be estimated by the method that the saturated SOC content subtracts the actual SOC associated with clay and silt. Overall, the SOC density and CSP of most soil groups increased from the 1980 s to 2010 and varied between different soil groups. Among all soil groups, Haplic phaeozems had the highest SOC density and Endogleyic solonchaks had the largest CSP. Areas of soil groups with the highest SOC density(90 to 120 t C ha^(–1)) and carbon sequestration(120 to 160 t C ha^(–1)) also increased over time. With regard to spatial distribution, the north of the province had higher SOC density but lower CSP than the south. With respect to land-use type, cultivated soils had lower SOC density but higher CSP than uncultivated soils. In addition, SOC density and CSP were influenced by soil physicochemical properties, climate and terrain and were most strongly correlated with soil humic acid concentration. The results suggest that soil groups(uncultivated soils) of higher SOC density have greater risk of carbon dioxide emission and that management should be aimed at maximizing carbon sequestration in soil groups(cultivated soils) with greater CSP. Furthermore, soils should be managed according to their spatial distributions of SOC density and carbon sequestration potential under different soil groups.
文摘Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow (MP) corn (Zea mays L.) and soybean (Glycine max L.) production systems. The first trial was conducted on a Maryhill silt loam (Typic Hapludalf) at Elora, Ontario, Canada, the second on a Brookston clay loam (Typic Argiaquoll) at Woodslee, Ontario, Canada, and the third on a Thorp silt loam (Argiaquic Argialboll) at Urbana, Illinois, USA. No-tillage led to significantly higher SOC concentrations in the top 5 cm compared to MP at all 3 sites. However, NT resulted in significantly lower SOC in sub-surface soils as compared to MP at Woodslee (10-20 cm, P = 0.01) and Urbana (20-30 cm, P < 0.10). No-tillage had significantly more SOC storage than MP at the Elora site (3.3 Mg C ha-1) and at the Woodslee site (6.2 Mg C ha-1) on an equivalent mass basis (1350 Mg ha-1 soil equivalent mass). Similarly, NT had greater SOC storage than MP at the Urbana site (2.7 Mg C ha-1) on an equivalent mass basis of 675 Mg ha-1 soil. However, these differences disappeared when the entire plow layer was evaluated for both the Woodslee and Urbana sites as a result of the higher SOC concentrations in MP than in NT at depth. Using the minimum detectable difference technique, we observed that up to 1500 soil sample per tillage treatment comparison will have to be collected and analyzed for the Elora and Woodslee sites and over 40 soil samples per tillage treatment comparison for the Urbana to statistically separate significant differences in the SOC contents of sub-plow depth soils. Therefore, it is impracticable, and at the least prohibitively expensive, to detect tillage-induced differences in soil C beyond the plow layer in various soils.
基金supported by the National Natural Science Foundation of China (Grant No. 41373078)the National Key Basic Research Program of China (Grant No. 2013CB956702)
文摘The karst mountain areas of Southwest China contain barren farmland soils and suffer from nutritional and water deficiencies that affect crop productivity. Hence,it is imperative to apply suitable fertilizers to restore soil fertility and maintain crop yield. The aim of this study is to investigate the effects of mineral-organic fertilizer(MOF)made of potassic rock and organic waste on the growth of crops. For this purpose, green Chinese cabbage grown using three different fertilization methods including MOF,inorganic fertilizer(IF), and a control was evaluated. We determined soil water content, agronomic characteristics,and biomass of green Chinese cabbage in different treatments. Furthermore, surface runoff from the pot experiments and soil leachate from pot experiments were collected to determine water temperature, pH, and cation and anion concentrations. The results demonstrate thatMOF can improve the soil water-holding capacity of soil,and the basic agronomic characteristics of the cabbage treated with MOF were superior to those with IF. Using MOF can promote the increase in cabbage biomass.Additionally, the concentration of inorganic carbon(largely in the form of HCO_3^-) in surface runoff water treated by MOF was higher than the other treatments, establishing carbon sequestration potential. This work provides a novel and environmentally friendly fertilization pattern in karst areas, which will improve crop yield and also increase the carbon sequestration potential of crops.
基金funded by Australian Research Council Discovery Project(Grant No.DP110104766)financial support from the China Australia Geological Storage of CO_2 Project(CAGS)Australia-China Young Researchers Exchange Program 2012
文摘The use of sequestered carbon dioxide(CO) as the heat exchange fluid in enhanced geothermal system(EGS) has significant potential to increase their productivity, contribute further to reducing carbon emissions and increase the economic viability of geothermal power generation. Coupled COsequestration and geothermal energy production from hot dry rock(HDR) EGS were first proposed 15 years ago but have yet to be practically implemented. This paper reviews some of the issues in assessing these systems with particular focus on the power generation and COsequestration capacity. The Habanero geothermal field in the Cooper Basin of South Australia is assessed for its potential COstorage capacity if supercritical COis used as the working fluid for heat extraction. The analysis suggests that the major COsequestration mechanisms are the storage in the fracture-stimulation damaged zone followed by diffusion into the pores within the rock matrix. The assessment indicates that 5% of working fluid loss commonly suggested as the storage capacity might be an over-estimate of the long-term COsequestration capacity of EGS in which supercritical COis used as the circulation fluid.
基金Department of Science and Technology,Government of India,New Delhi for providing me financial assistance
文摘We examined the carbon stock and rate of carbon sequestration in a tropical deciduous forest dominated by Dipterocarpus tuberculatus in Manipur,North East India.Estimation of aboveground biomass was determined by harvest method and multiplied with density of tree species.The aboveground biomass was between18.27–21.922 t ha-1and the carbon stock ranged from9.13 to 10.96 t C ha-1across forest stands.Aboveground biomass and carbon stock increased with the increase in tree girth.The rate of carbon sequestration varied from1.4722 to 4.64136 t ha-1year-1among the dominant tree species in forest stands in tropical deciduous forest area.The rate of carbon sequestration depends on species composition,the density of large trees in different girth classes,and anthropogenic disturbances in the present forest ecosystem.Further work is required to identify tree species having the highest potential to sequester CO2 from the atmosphere,which could lead to recommendations for tree plantations in a degraded ecosystem.
基金supported by San Chazi Forestry Bureau,and the key project of Chinese Academy of Sciences,Grant No.KFZD-SW-305-001
文摘Carbon sinks constitute an important element within the complex phenomenon of global climate change,and forest ecosystems are important global carbon sinks.The Natural Forest Protection Program(NFPP) is an ecological program in China that was established after catastrophic flooding in the country in 1998.The goals of the NFPP are to curb the deterioration of the ecological environment,strengthen the protection and restoration of habitat to increase biodiversity,and rehabilitate natural forests to support sustainable development in forest regions.This study looked at changes in carbon sequestration in a forested area of northeast China after the inception of the NFPP.The program divides China's natural forests into three classes—commercial and two types of noneconomic forests—that are subject to management regimes prescribing varying levels of timber harvest,afforestation,and reforestation.During the 18-year period from 1998 to 2015,the total amount of carbon sequestration increased at an average annual rate of 0.04 MT C.This trend reflects a transformation of forest management practices after implementation of the NFPP that resulted in prohibited and/or restricted logging and tighter regulation of allowable harvest levels for specific areas.In documenting this trend,guidelines for more effective implementation of forestry programs such as the NFPP in other countries in the future are also suggested.
基金supported by the National Key Research and Development Program of China(2021YFD1700200)the earmarked fund for China Agriculture Research System(CARS-22).
文摘Green manure(GM)has been used to support rice production in southern China for thousands of years.However,the effects of GM on soil carbon sequestration(CS)and the carbon footprint(CF)at a regional scale remain unclear.Therefore,we combined the datasets from long-term multisite experiments with a meta-analysis approach to quantify the potential of GM to increase the CS and reduce the CF of paddy soils in southern China.Compared with the fallow-rice practice,the GM-rice practice increased the soil C stock at a rate of 1.62 Mg CO_(2)-eq ha^(-1) yr^(-1) and reduced chemical N application by 40%with no loss in the rice yield.The total CF varied from 7.51 to 13.66 Mg CO_(2)-eq ha^(-1) yr^(-1) and was dominated by CH_(4) emissions(60.7-81.3%).GM decreased the indirect CF by 31.4%but increased the direct CH_(4) emissions by 19.6%.In the low and high CH_(4) emission scenarios,the CH_(4) emission factors of GM(EF_(gc))were 5.58 and 21.31%,respectively.The greater soil CS offset the increase in GM-derived CF in the low CH_(4) scenario,but it could not offset the CF increase in the high CH_(4) scenario.A trade-off analysis also showed that GM can simultaneously increase the CS and reduce the total CF of the rice production system when the EF_(gc) was less than 9.20%.The variation in EF_(gc) was mainly regulated by the GM application rates and water management patterns.Determining the appropriate GM application rate and drainage pattern warrant further investigation to optimize the potential of the GM-rice system to increase the CS and reduce the total CF in China.
基金The research was fully funded by DST-SERB research Project NO.SB/YS/LS-88/2013.Minor Grants received through R&D Grants,University of Delhi is also highly acknowledged.
文摘Understanding the dynamics of soil carbon is crucial for assessing the soil carbon storage and predicting the potential of mitigating carbon dioxide from the atmosphere to the biomass and soil.The present study evaluated variations of soil carbon stock in semi-arid forests in India under diff erent moisture regimes.Soil organic carbon(SOC)and soil inorganic carbon(SIC)stocks were determined in diff erent moisture regimes i.e.monsoon,post-monsoon,winter and pre-monsoon seasons at 0–10 and>10–20 cm depths.SOC stock showed signifi cant variations under different moisture regimes.The highest SOC stock was during winter(22.81 Mg C ha−1)and lowest during the monsoon season(2.34 Mg C ha−1)among all the ridge forests under study.SOC and SIC stock under diff erent moisture regimes showed signifi cant negative correlation with soil moisture(p<0.05),as a sudden increase in soil moisture after rainfall results in an increase in carbon loss due to microbial decomposition of accumulated carbon during the dry period.There was an increase in annual SOC stock and a decrease(or no change in some cases),in SIC stock at both the depths during the study period.The SOC and SIC sequestration rates were estimated as any increase/decrease in the respective stock during each successive year.SOC sequestered ranged between 0.046 and 0.741 Mg C ha−1 y−1.Similarly,SIC sequestration ranged between 0.013 and 0.023 Mg C ha−1 y−1 over all ridge forests up to 20 cm depth.The Delhi ridge forests,which accounts to 0.007%of the semi-arid regions of India,contribute 0.25–0.32%of the national potential(semi-arid region)for SOC sequestration up to 20 cm depth.The estimates of the rate of C sequestration in this study provide a realistic image of carbon dynamics under present climatic conditions of semi-arid forests,and could be used in developing a database and formulating new strategies for carbon dioxide mitigation by enhancing soil C sequestration rates.
基金Supported by CNPC Science and Technology Project(kt2022-8-202021ZZ01).
文摘Based on practices of CO_(2) flooding tests in China and abroad,the recovery factor of carbon dioxide capture,utilization in displacing oil and storage(CCUS-EOR)in permanent sequestration scenario has been investigated in this work.Under the background of carbon neutrality,carbon dioxide injection into geological bodies should pursue the goal of permanent sequestration for effective carbon emission reduction.Hence,CCUS-EOR is an ultimate development method for oil reservoirs to maximize oil recovery.The limit recovery factor of CCUS-EOR development mode is put forward,the connotation differences between it and ultimate recovery factor and economically reasonable recovery factor are clarified.It is concluded that limit recovery factor is achievable with mature supporting technical base for the whole process of CCUS-EOR.Based on statistics of practical data of CO_(2) flooding projects in China and abroad such as North H79 block CO_(2) flooding pilot test at small well spacing in Jilin Oilfield etc.,the empirical relationship between the oil recovery factor of miscible CO_(2) flooding and cumulative CO_(2) volume injected is obtained by regression.Combined with the concept of oil production rate multiplier of gas flooding,a reservoir engineering method calculating CO_(2) flooding recovery factor under any miscible degree is established by derivation.It is found that when the cumulative CO_(2) volume injected is 1.5 times the hydrocarbon pore volume(HCPV),the relative deviation and the absolute difference between the recovery percentage and the limit recovery factor are less than 5%and less than 2.0 percentage points respectively.The limit recovery factor of CCUS-EOR can only be approached by large pore volume(PV)injection based on the technology of expanding swept volume.It needs to be realized from three aspects:large PV injection scheme design,enhancing miscibility degree and continuously expanding swept volume of injected CO_(2).
文摘Current production agriculture systems typically focus on yield outcomes at all costs. By shifting to best management practices based on regenerative farming principles, however, agricultural systems worldwide could maintain or even improve yields while sequestering atmospheric carbon (C) into soil organic matter (SOM). To demonstrate the effectiveness of regenerative principles at simultaneously benefiting agriculture and reducing greenhouse gasses, their C sequestration potential was examined through SOM data from 486 soil sampling locations from multiple farms throughout the coastal plains of South Carolina. These data were compared over varying multiple-year periods between 2013 and 2017 as their land management practices shifted from conventional methods to those based on the regenerative-based practice of cover cropping. The implementation of cover crops in crop rotations resulted in statistically significant mean SOM percentage increases of 0.11 (p ≤ 0.001), 0.11 (p ≤ 0.001), and 0.55 (p ≤ 0.001) for sampling sites converted into rotations utilizing cover crops for two, three, and four years, respectively. When averaged out per year for each sampling group, this results in an average of 622, 425, and 1584 lbs./acre/year of C fixed from the atmosphere and retained in the soil as organic matter. Increases were observed across all soil types sampled in the study with soil texture not significantly influencing a soils’ ability to increase soil OM or sequester atmospheric C through cover crop implementation. The calculations based on the coastal plains’ soils studied here demonstrate the promising potential of the application of regenerative farming principles to not only restore degraded biodiversity, recycle nutrients, improve farm profitability, and reduce chemical inputs, but also to sequester atmospheric C and simultaneously help reduce the effect of global climate change while creating healthy soils.
基金funded by the project (No.41072192)from National Natural Science Foundation of Chinathe project(No.1212011087122)from China Geological Survey
文摘The karst process acts as carbon sequestration for atmospheric CO_2.The amount of karst carbon sequestration (KCS) depends on the discharge of karst catchment and inorganic carbon concentration of the water body.Based on the data from the monitoring station on Banzhai subterranean stream located in Maolan National Nature Reserve of Guizhou province,the process and influence factors of KCS have been analyzed.It shows that the amount of KCS is about 353 t C per year in the catchment of Banzhai subterranean stream,and there is good linear relationship between the strength of KCS and discharge of the stream at various time scales.Therefore,how to monitor the discharge accurately is the key to the estimation of KCS.And stations with real-time monitoring function are very important for KCS calculation because of strong seasonal variability of the karst water cycle.
文摘Carbon sequestration is one of the important ecosystem services provided by forested landscapes. Dry forests have high potential for carbon storage. However, their potential to store and sequester carbon is poorly understood in Kenya. Moreover, past attempts to estimate carbon stock have ignored drylands ecosystem heterogeneity. This study assessed the potential of Mukogodo dryland forest-landscape in offsetting carbon dioxide through carbon sequestration and storage. Four carbon pools (above and below ground biomass, soil, dead wood and litter) were analyzed. A total of 51<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">(400</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">m<sup>2</sup>) sample plots were established using stratified-random sampling technique to estimate biomass across six vegetation classes in three landscape types (forest reserve, ranches and conservancies) using nested-plot design. Above ground biomass was determined using generalized multispecies model with diameter at breast height, height and wood density as variables. Below ground, soil, litter and dead wood biomass;carbon stocks and carbon dioxide equivalents (CO<sub>2eq</sub>) were estimated using secondary information. The CO<sub>2eq</sub> was multiplied by current prices of carbon trade to compute carbon sequestration value. Mean ± SE of biomass and carbon was determined across vegetation and landscape types and mean differences tested by one-way Analysis of Variance. Mean biomass and carbon was about 79.15 ± 40.22</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TB</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha</span></span></span><span style="font-size:10px;"><span style="vertical-align:super;">-</span></span><span><span><span style="font-family:;" "=""><sup>1</sup> and 37.25 ± 18.89</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">-</span>1</sup> respectively. Cumulative carbon stock was estimated at 682.08</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;">-</span>1</sup>;forest reserve (251.57</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup>-1</sup>) had significantly high levels of carbon stocks compared to ranches (209.78</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>) and conservancies (220.73</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">TC</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">ha<sup><span style="font-size:10px;white-space:normal;">-</span>1</sup>, <i>P</i> = 0.000). Further, closed forest significantly contributed to the overall biomass and carbon stock (58%). The carbon sequestration potential was about 19.9MTCO<sub>2eq</sub> with most conservative worth of KES 39.9B (US$40M) per annum. The high carbon stock in the landscape shows the potential of dryland ecosystems as carbon sink for climate change mitigation. However, for communities to benefit from bio-carbon funds in future, sustainable landscape management and restorative measures should be practiced to enhance carbon storage and provision of other ecosystem services.</span></span></span>
文摘Mangroves in coastal cities are under threat due to development pressures. However, mangrove ecosystems can serve as a potential carbon sink for mitigating the impacts of climate change. The main objective of this study was to estimate the carbon sequestration potential of mangroves in the Al-Qurm natural reserve, Muscat, Oman. The reserve was classified into three distinct zones and was estimated through field measurement and remote sensing techniques. The study found that each zone sequesters varying levels of carbon. The highest mean carbon stock was measured in the landward zone (20.2 ± 0.3 kg∙C/m<sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), followed by the middle zone (8.7 ± 0.4 kg∙C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) and seaward zone (5.8 ± 0.8 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), respectively. The carbon sequestration rate of the sediment range </span><span style="font-family:Verdana;">was </span><span style="font-family:;" "=""><span style="font-family:Verdana;">between 5.0 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">∙</span>year - 12.5 g C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><span style="font-family:Verdana;white-space:normal;">∙</span>year. Normalized difference vegetation index (NDVI) derived from above-ground biomass showed a positive relationship (r = 0.73) with biomass measured in the field. However, the average above-ground carbon was underestimated (6.3 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">) than the above-ground field measurement (7.0 kg<span style="font-family:Verdana;white-space:normal;">∙</span>C/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">). This 0.82 km</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> of the natural reserve was estimated to sequester approximately 9512 tonnes of carbon equivalent to 0.035 Mt of CO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">e. This highlights the importance of conserving this natural reserve, despite a growing demand for land use in and around the reserve for development needs.</span></span>
文摘Seaweed has the ability to use carbon from the environment through photosynthesis to produce biomass. The aim of this study is to estimate carbon sequestration by seaweed aquaculture as a strategy for climate change mitigation. The study was undertaken at Gerupuk Bay, Lombok Island, West Nusa Tenggara Province, Indonesia. Four seaweed variants, such as Kappaphycus alvarezii var. Tambalang and Maumere, K. striatum and Eucheuma denticulatum, were cultivated with long-line system for three cultivation periods, starting from July to November, 2013. Each cultivation period was taken about 45 days. Parameters including weight increasement and carbon content of seaweeds were measured every 15 days of culture for each cultivation period in order to calculate carbon sequestration rate. The results showed that E. denticulatum had the highest carbon sequestration rate and significantly different (P 〈 0.05) compared with other variants for every cultivation period. Different seaweed variants have different capacity on carbon sequestration. Optimal utilization of the potential area for seaweed aquaculture could reduce a great quantity of CO2 from the atmosphere and help to mitigate global climate change process.