期刊文献+
共找到1,436篇文章
< 1 2 72 >
每页显示 20 50 100
Relations of Microstructural Attributes and Strength-Ductility of Zirconium Alloys with Hydrides
1
作者 Chao Fang Xiang Guo +1 位作者 Jianghua Li Gang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期407-419,共13页
As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great si... As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation. 展开更多
关键词 Zirconium alloy HYDRIDE strength and ductility Cohesive finite element method Microcrack initiation and propagation
下载PDF
Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process 被引量:27
2
作者 Zhi Zhang Jing-huai Zhang +5 位作者 Jun Wang Ze-hua Li Jin-shu Xie Shu-juan Liu Kai Guan Rui-zhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期30-45,共16页
Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simult... Magnesium(Mg) alloys, as the lightest metal engineering materials, have broad application prospects.However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously.Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility.In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced.Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence.This review can be used as a reference for further development of high-performance fine-grained Mg alloys. 展开更多
关键词 magnesium alloys grain refinement high strength high ductility deformation process
下载PDF
EFFECT OF THE CONTROLLED ROLLING CONTROLLED COOLING ON STRENGTH AND DUCTILITY OF THE BAINITE MICRO ALLOYED ENGINEERING STEEL 被引量:2
3
作者 Z. Li, G. D. Wang,X. H. Liu and C. Y. Ma The State Key Lab. of Rolling Technology and Automation, Northeastern Univarsity, Shenyang 110006 China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期421-427,共7页
The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility ha... The continuous cooling transformation of hot deformation austenite austenite of test steel and the effect of different processing schedules of controlled rolling and controlled cooling on the strength and ductility have been studied. The theory and the experiment base are presented for controlled rolling and controlled cooling of the SBL micro alloyed engineering steel. 展开更多
关键词 micro alloyed engineering steel controlled rolling and controlled cooling strength and ductility BAINITE
下载PDF
First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni 被引量:1
4
作者 李春霞 党随虎 +2 位作者 王丽萍 张彩丽 韩培德 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期454-458,共5页
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t... We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer. 展开更多
关键词 first principles generalized stacking fault energy Nickel based alloys strength and ductility
下载PDF
Recent developments of the high strength and high ductility nanostructured materials 被引量:1
5
作者 Jian LU,Aiying CHEN,Hongning KOU,Ying LI,Leyu WANG and Chunsheng WEN Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom Kowloon,Hong Kong,China 《Baosteel Technical Research》 CAS 2010年第S1期93-,共1页
This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.I... This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented. 展开更多
关键词 nanostructured materials high strength high ductility surface mechanical attrition treatment(SMAT)
下载PDF
Assessment of the Plantar Pressure, Muscle Strength and Balance in Patients with Type 2 Diabetes Mellitus in Cyprus
6
作者 Başar Öztürk Ender Angın +2 位作者 Zehra Güçhan Yasin Yurt Mehtap Malkoç 《Open Journal of Endocrine and Metabolic Diseases》 2016年第5期151-158,共8页
Aims: Diabetes Mellitus (DM) is a metabolic disorder which affects whole systems of human body. This study aimed to compare the strength of foot muscles, dynamic balance, and peak plantar pressure between diabetic pat... Aims: Diabetes Mellitus (DM) is a metabolic disorder which affects whole systems of human body. This study aimed to compare the strength of foot muscles, dynamic balance, and peak plantar pressure between diabetic patients before developing polyneuropathy and healthy peers. Methods: 21 people, 11 diabetic patients and 10 age-matched healthy peers, were included in the study. A manual muscle tester (model 01163 Lafayette) was used to assess muscle strength. Pedobarography was the device to determine the distribution of plantar pressure into nine regions of foot. Dynamic balance was also measured by using a mobile platform (Techno-body, PK 200 WL, Italy). Results: Diabetic and control groups had similar muscle strength and dynamic balance (p > 0.05). Most of the plantar pressure findings were also similar (p > 0.05). There were significant differences in only two regions of foot between two groups (p < 0.05). Conclusion: Diabetes Mellitus is not a factor influencing balance and muscle strength before polyneuropathy. However, it is possible to state that it may negatively affect the distribution of plantar pressure so clinians should assess and treat this distribution in the patients with DM. 展开更多
关键词 DIABETES Muscle strength balance Plantar Pressure
下载PDF
Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion 被引量:4
7
作者 Jinshu Xie Zhi Zhang +6 位作者 Shujuan Liu Jinghuai Zhang Jun Wang Yuying He Liwei Lu Yunlei Jiao Ruizhi Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期82-91,共10页
Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial... Two new low-alloyed Mg-2RE-0.8Mn-0.6Ca-0.5Zn(wt%,RE=Sm or Y)alloys are developed,which can be produced on an in-dustrial scale via relatively high-speed extrusion.These two alloys are not only comparable to commercial AZ31 alloy in extrudability,but also have superior mechanical properties,especially in terms of yield strength(YS).The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys.The high strength-ductility mainly comes from the formation of fine grains,nano-spaced submicron/nano precipitates,and weak texture.Moreover,it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C,significantly higher than that of AZ31 alloy(YS:45 MPa).The Zn/Ca solute segregation at grain boundaries,the improved heat resistance of matrix due to addition of RE,and the high melting points of strengthening particles(Mn,MgZn_(2),and Mg-Zn-RE/Mg-Zn-RE-Ca)are mainly responsible for the excellent high-temperature strength. 展开更多
关键词 magnesium alloys high-speed extrusion high strength high ductility solute segregation
下载PDF
Mechanical and Electrical Properties of Some Sn-Zn Based Lead-Free Quinary Alloys
8
作者 Shihab Uddin Md. Abdul Gafur +1 位作者 Suraya Sabrin Soshi Mohammad Obaidur Rahman 《Materials Sciences and Applications》 2024年第7期213-227,共15页
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ... Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy. 展开更多
关键词 Lead-Free Solder Strain Rate Ultimate Tensile strength ductility Electrical Conductivity
下载PDF
Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy:Co-regulating effect from coarse Al_(2)Y and submicron Mg_(17)Al_(12) particles 被引量:7
9
作者 Yong-Kang Li Min Zha +6 位作者 Hai-Long Jia Si-Qing Wang Hongmin Zhang Xiao Ma Teng Tian Pinkui Ma Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1571-1582,共12页
Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in ... Grain boundary strengthening is an effective strategy for increasing mechanical properties of Mg alloys.However,this method offers limited strengthening in bimodal grain-structured Mg alloys due to the difficultly in increasing the volume fraction of fine grains while keeping a small grain size.Herein,we show that the volume fraction of fine grains(FGs,~2.5μm)in the bimodal grain structure can be tailored from~30 vol.%in Mg-9 Al-1 Zn(AZ91)to~52 vol.%in AZ91-1Y(wt.%)processed by hard plate rolling(HPR).Moreover,a superior combination of a high ultimate tensile strength(~405 MPa)and decent uniform elongation(~9%)is achieved in present AZ91-1Y alloy.It reveals that a desired bimodal grain structure can be tailored by the co-regulating effect from coarse Al_(2)Y particles resulting in inhomogeneous recrystallization,and dispersed submicron Mg_(17)Al_(12)particles depressing the growth of recrystallized grains.The findings offer a valuable insight in tailoring bimodal grain-structured Mg alloys for optimized strength and ductility. 展开更多
关键词 Magnesium alloys Bimodal grain structure Second-phase particles Recrystallization strength ductility
下载PDF
Thickness-related synchronous increase in strength and ductility of ultrafine-grained pure aluminum sheets 被引量:2
10
作者 Ying Yan Guo-qiang Zhang +1 位作者 Li-jia Chen Xiao-wu Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第11期1450-1456,共7页
To explore the specimen size effect of mechanical behavior of ultrafine-grained(UFG)materials with different structures,UFG Al sheets processed by equal channel angular pressing(ECAP)were selected as target materials ... To explore the specimen size effect of mechanical behavior of ultrafine-grained(UFG)materials with different structures,UFG Al sheets processed by equal channel angular pressing(ECAP)were selected as target materials and the dependency of tensile behavior on sheet thickness(t)was systematically investigated.The strength and ductility of ECAPed UFG Al sheets were improved synchronously as t increased from 0.2 to 0.7 mm,and then no apparent change occurred when t reached to 0.7 and 1.0 mm.The corresponding microstructure evolved from dislocation networks in equiaxed grains into the walls and subgrains and finally into the dominated cells in elongated grains or subgrains.Meanwhile,dense shear lines(SLs)and shear bands(SBs)were clearly observed and microvoids and cracks were initiated along SBs with the increase of t.These observations indicated that the plastic deformation of UFG Al sheets was jointly controlled by shear banding,dislocation sliding,and grain-boundary sliding.Furthermore,the propagation of SBs became difficult as t increased.Finally,the obtained results were discussed and compared with those of annealed UFG Al and UFG Cu. 展开更多
关键词 ULTRAFINE-GRAINED PURE Al SPECIMEN size effect strength ductility
下载PDF
INVESTIGATION ON HOT DUCTILITY AND STRENGTH OF CONTINUOUS CASTING SLAB FOR AH32 STEEL 被引量:2
11
作者 G. Y. Li X.F. Li L.G. Ao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第1期75-78,共4页
By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the diffe... By means of Gleeble-1500 testing machine, the simulation of continuous casting process forAH32 steel was carried out and hot ductility and strength were determined. The cracking sensitivity was studied under the different temperatures and strain rates. The Precipitations of AIN at different temperatures and the fractures of high-temperature tensile samples were observed by using TEM (transmission electron microscope) and SEM (scanning electron microscope). The factors affecting the brittle temperature zone were discussed. 展开更多
关键词 continuous casting slab brittle temperature zone tensile strength ductility SIMULATION
下载PDF
Strain rate and cold rolling dependence of tensile strength and ductility in high nitrogen nickel-free austenitic stainless steel 被引量:1
12
作者 孙贵训 江月 +4 位作者 张晓茹 孙世成 江忠浩 王文权 连建设 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期341-349,共9页
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room... The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling. 展开更多
关键词 high nitrogen nickel-free austenitic stainless steel cold rolling Ludwigson equation tensile strength and ductility
下载PDF
Rolling, Partial and Full Annealing of 6061 Characterization of Microstructure, Tensile Strengths and Ductility 被引量:1
13
作者 Wei Zhang 《Materials Sciences and Applications》 2016年第9期453-464,共12页
The scope of this research is to compare the grain morphology and hardness of aluminum alloy 6061 samples in three conditions: fully rolled (full hard), partially annealed (half hard), and fully annealed (soft). It is... The scope of this research is to compare the grain morphology and hardness of aluminum alloy 6061 samples in three conditions: fully rolled (full hard), partially annealed (half hard), and fully annealed (soft). It is found that cold rolling produced elongated grains, parallel to the rolling direction, and the highest degree of grain-elongation is found as a band in the center of the specimens. Shearing effects of cold rolling the buckled surface produced equiaxed grains near the rolling surfaces, and may have played a role in reducing the effect of string forming solutes near the said surfaces. Higher percent reduction performed in one stage of cold rolling produced a higher increase in tensile strength and a more significant decrease in ductility. Annealing produced the softest material. 展开更多
关键词 Cold Rolling ANNEALING Grain-Elongation Tensile strength ductility
下载PDF
Effect of structural characteristics distribution on strength demand and ductility reduction factor of MDOF systems considering soil-structure interaction
14
作者 Behnoud Ganjavi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第2期205-220,共16页
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan... It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases. 展开更多
关键词 soil-structure interaction MDof systems structural characteristic distribution inelastic behavior strength demand ductility reduction factor
下载PDF
Seismic ductility of very-high-strength-concrete short columns subject to combined axial loading and cyclic lateral loading 被引量:1
15
作者 姜睿 《Journal of Chongqing University》 CAS 2007年第3期205-212,共8页
The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specime... The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger;whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor, μ?, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ?=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes I, II, and Ⅲ;corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering. 展开更多
关键词 地震 延展性 高强度混凝土 抗震能力
下载PDF
Effects of virtual reality balance games combined with muscle strength training on balance function and motor ability of Parkinson's patients
16
作者 Li-Chun Sun Rong Chen 《Journal of Hainan Medical University》 2020年第9期15-18,共4页
Objective To investigate the effects of virtual reality balance games combined with strengthening muscle training on balance function and exercise capacity in patients with Parkinson's disease.Methods Sixty patien... Objective To investigate the effects of virtual reality balance games combined with strengthening muscle training on balance function and exercise capacity in patients with Parkinson's disease.Methods Sixty patients with Parkinson's disease were selected from January 2018 to October 2019.The random number table method was divided into the control group(n=30)and the observation group(n=30).Both groups were given conventional drugs and For rehabilitation training,the observation group was given a virtual reality balance game combined with strengthening muscle training.The upper limbs,lower limbs,balance function,comprehensive rehabilitation effect and daily living ability were compared before and after training.Results After training,the Brunnstrom score,FMA-UE,FMA-LE score,and cadence score of the two groups of patients increased.The common contraction rate(CR)of the biceps brachii in elbow flexion and the three heads of the brachii in elbow extension Muscle CR,standing walking test,10m walking test,reduced left and right step difference,and the observation group was better than the control group,which was significant(P<0.05).Conclusion Patients with Parkinson's disease have improved their upper and lower extremity motor capacity and balance function through virtual reality balance games combined with strengthening muscle training,which can improve the overall rehabilitation effect and ability of daily living. 展开更多
关键词 Parkinson's disease balance movement Virtual reality balance games strengthen muscle strength trainin
下载PDF
Exploring a balance between strength and ductility of hexagonal BN nanoplatelet reinforced ZK61 magnesium composite
17
作者 Kewei Zhang Xiaolong Lu +2 位作者 Yufeng Sun Shaokang Guan Yao Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS 2024年第5期1899-1910,共12页
The practical applications of magnesium(Mg)alloys are usually beset by their relatively low strength and limited ductility.Herein we attempt to fabricate hexagonal BN nanoplatelet(BNNP)reinforced ZK61 magnesium compos... The practical applications of magnesium(Mg)alloys are usually beset by their relatively low strength and limited ductility.Herein we attempt to fabricate hexagonal BN nanoplatelet(BNNP)reinforced ZK61 magnesium composites using a combination of spark plasma sintering and friction stir processing.The resulting composites exhibit microstructural characteristics of homogeneous dispersion of BNNP in Mg matrix with refined equiaxed grains and(0002)basal texture roughly surrounding the pin column surface.Transmission electron microscopy observation illustrates that trace amounts of Mg_(3)N_(2)and MgB_(2)form at BNNP-Mg interface,in which Mg_(3)N_(2)locates at the basal plane of a BNNP and MgB_(2)grows at its open edge.The spatial distribution of Mg_(3)N_(2)and MgB_(2)facilitates interfacial wetting and stronger BNNP-Mg interface in such a way that interfacial products act as anchors bonding between them.In comparison with monolithic ZK61 alloy,the BNNP/ZK61 composites display simultaneous improvements in yield strength,hardness and ductility,achieving good strength-ductility balance.This research is expected to shed some light on BNNP potentials for designing and producing magnesium composites with high strength and good ductility. 展开更多
关键词 BN nanoplatelet Magnesium composite strength ductility Spark plasma sintering Friction stir processing
下载PDF
A review on assessment and treatment of the trunk in stroke A need or luxury 被引量:5
18
作者 Suruliraj Karthikbabu Mahabala Chakrapani +3 位作者 Sailakshmi Ganeshan Kedambadi C Rakshith Syed Nafeez Venkatesan Prem 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第25期1974-1977,共4页
Trunk function has been identified as an important early predictor of functional outcome after stroke and the same deteriorates on both contralateral and ipsilateral sides of the body following stroke. The primary con... Trunk function has been identified as an important early predictor of functional outcome after stroke and the same deteriorates on both contralateral and ipsilateral sides of the body following stroke. The primary contribution of the trunk muscles is to allow the body to remain upright, adjust weight shifts, and control movements against constant pull of gravity and is considered central key point of the body. Proximal stability of the trunk is a pre-requisite for distal limb mobility, balance, gait and functional activities and its positive correlation in hemiplegia has been demonstrated in a cross- sectional study. Both isokinetic and handheld dynamometer muscle strength testing demonstrated the weakness of bilateral trunk flexors, extensors and rotator muscles in both acute and chronic hemiplegic patients. This was confirmed by electromyography analysis which identified poor bilateral trunk muscles activity in patients with stroke. Trunk impairment scale is sensitive to evaluate the selective muscle control of upper and lower trunk, and it has been reported that lateral flexion of the trunk is easier than rotation of the trunk and the clinical observation concurs to the difficulty in lower trunk rotation of stroke patients. However, trunk exercises given early after stroke could produce enhanced balance performance post- stroke. This review attempts to report the evidence supporting the involvement of the trunk and its influence on balance and functional performance in post-stroke hemiplegia. 展开更多
关键词 STROKE HEMIPLEGIA trunk control balance function ELECTROMYOGRAPHY trunk muscle activity strength trunk impairment scale REVIEW
下载PDF
Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D 被引量:10
19
作者 KaikunWang KuiZhang 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期363-366,共4页
The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carri... The effects of rare earth elements on the microstructure andproperties of magnesium alloy AZ91D alloy were studied. The differentproportion of rare earth elements was added to the AZ91D and thetensile tests were carried out at different temperatures. Theexperimental results show that at room temperature or at 120 deg. Cthe AZ91D's strength decrease with the increasing amount of the rareearth elements. However, the ductility is improved. The influence of0.14/100Sb(mass fraction)on the AZ91D's strength is like that of rareearth elements(0.2/100-0.4/100)(mass fraction). Microstructure graphsdemonstrate that appropriate amount of rare earth elements(0.1/100-0.2/100)can fine AZ91D's grain and improve its ductility. 展开更多
关键词 magnesium alloy AZ91D rare earth elements strength ductility
下载PDF
Development of a high-strength Mg alloy with superior ductility through a unique texture modification from equal channel angular pressing 被引量:10
20
作者 L.B.Tong J.H.Chu +5 位作者 W.T.Sun Z.H.Jiang D.N.Zou S.F.Liu S.Kamado M.Y.Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1007-1018,共12页
In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the... In the current study,a homogenous ultra-fine grained microstructure with average grain size of 1.0μm is achieved in the Mg-Zn-Ca-Mn alloy through the reduplicative equal channel angular pressing(ECAP)at 300℃,and the mechanical properties are remarkably improved,with room-temperature yield strength of 269.6 MPa and elongation of 22.7%.The twinning deformation results in a discontinuous recrystallization behavior in the initial stage of ECAP.With further deformation,the continuously dynamic recrystallization contributes to an obvious grain refinement effect.The activation of non-basal slip system leads to the formation of a unique basal texture,which is related to the elevated ECAP temperature and the decreased grain size.Both grain refinement and texture modification derived from ECAP process result in the increase of yield strength,while the cracked secondary phase particles are beneficial to the enhanced ductility,through reducing the stress concentration and hindering premature failure. 展开更多
关键词 Mg alloy ECAP Microstructural evolution High strength Superior ductility
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部