In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research resu...In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.展开更多
The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author ...The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.展开更多
The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research...The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.展开更多
This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blo...This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.展开更多
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a...A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.展开更多
In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulati...In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulation.Based on the capillary number,a prediction equation for the bubble refinement was established.The effects of the gas flow rate,the stirring speed and thestirring depth on the bubble refinement in the reactor were discussed in detail.The distribution of the bubble diameter in thereactor was obtained under different conditions.The results show that when the stirring speed reaches 300 r/min,the bubblediamcter mainly distributes in the range of 1-2 mm.A higher gas flow rate may increase the number of bubbles in the meltand promote the bubble refinement process.The mechanism of bubble refinement under mechanical agitation was analyzed.and the results indicated that the stirring speed.,the blade area and the blade inclination are the main influencing factors.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51620105013)Dongying Fangyuan Nonferrous Metals Co., Ltd.
文摘In the newly developed oxygen-enriched bottom-blowing copper smelting process(also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.
文摘The available studies in the literature on physical modeling of the vacuum circulation (RH, i.e. Ruhrstahl Heraeus) refining process of molten steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was employed to investigate the flow and mixing characteristics of molten steel under the RH and RH KTB (Kawasaki top blowing) conditions and the mass transfer features between molten steel and powder particles in the RH PTB (powder top blowing) refining. The geometric similarity ratio between the model and its prototype (a multifunction RH degasser of 90 t capacity) was 1:5. The effects of the related technological and structural factors were considered. These latest studies have revealed the flow and mixing characteristics of molten steel and the mass transfer features between molten steel and powder particles in these processes, and have provided a better understanding of the refining processes of molten steel.
文摘The available studies in the literature on mathematical modeling of the vacuum circulation (RH) refining process of molten steel have briefly been reviewed. The latest advances obtained by the author with his research group have been summarized. On the basis of the mass and momentum balances in the system, a new mathematical model for decarburization and degassing during the RH and RH KTB refining processes of molten steel was proposed and developed. The refining roles of the three reaction sites, i.e. the up snorkel zone, the droplet group and steel bath in the vacuum vessel, were considered in the model. It was assumed that the mass transfer of reactive components in the molten steel is the rate control step of the refining reactions. And the friction losses and drags of flows in the snorkels and vacuum vessel were all counted. The model was applied to the refining of molten steel in a multifunction RH degasser of 90 t capacity. The decarburization and degassing processes in the degasser under the RH and RH KTB operating conditions were modeled and analyzed using this model. Besides, proceeded from the two resistance mass transfer theory and the mass balance of sulphur in the system, a kinetic model for the desulphurization by powder injection and blowing in the RH refining of molten steel was developed. Modeling and predictions of the process of injecting and blowing the lime based powder flux under assumed operating modes with the different initial contents of sulphur and amounts of powder injected and blown in a RH degasser of 300 t capacity were carried out using the model. It was demonstrated that for the RH and RH KTB refining processes, and the desulphurization by powder injection and blowing in the RH refining, the results predicted by the models were all in good agreement respectively with data from industrial experiments and practice. These models may be expected to offer some useful information and a reliable basis for determining and optimizing the technologies of the RH and RH KTB refining and desulphurization by powder injection and blowing in the RH refining and for controlling the processes.
文摘This article discusses and analyzes the law of nitrogen increase in liquid steel and the main factors affect-ing the nitrogen increasing of molten steel,through the way of adding nitrogen to molten steel by bottom blowing nitrogen gas in LF refining process.It is considered that the main factors affecting the nitrogen increasing instability of molten steel are the initial temperature of LF refining,nitrogen relative element,surface active elements[O]and[S]of steel liquid,and bottom blowing rate of ladle.The large-scale production practice shows that T[O]not more than 50×10-6 and[S]is not more than 0.020 in LF refining at the initial temperature of not less than 1570.The liquid steel nitrogen enrichment test is carried out by ladle bottom blowing nitrogen gas after 20 min of refining,the flow rate is set as(6.0~7.0)NL/min per ton,and it is turned to 2 NL/min at 6 min before the end of refining,the nitrogen increasing rate of liquid steel is basically stable at(5~6)×10-6 per minute.
基金financially supported by the National Natural Science Foundation of China(No.51704062)the Fundamental Research Funds for the Central Universities,China(No.N2025019)。
文摘A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
基金supported by the National Natural Science Foundation of China(U1508217,U1702253 and 51774078)the Fundamental Research Funds for the Central Universities(N172506009 and N170908001).
文摘In order to increase the contact area and promote the mass transfer process of gas and liquid,the process of the bubble refine-ment in a metallurgical reactor with mechanical agitation was studied by physical simulation.Based on the capillary number,a prediction equation for the bubble refinement was established.The effects of the gas flow rate,the stirring speed and thestirring depth on the bubble refinement in the reactor were discussed in detail.The distribution of the bubble diameter in thereactor was obtained under different conditions.The results show that when the stirring speed reaches 300 r/min,the bubblediamcter mainly distributes in the range of 1-2 mm.A higher gas flow rate may increase the number of bubbles in the meltand promote the bubble refinement process.The mechanism of bubble refinement under mechanical agitation was analyzed.and the results indicated that the stirring speed.,the blade area and the blade inclination are the main influencing factors.