目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串...目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串联质谱法和免疫印迹法3种方法对Cari1进行鉴定,并通过圆二色谱仪与紫外分光光度计表征其二、三级结构。结果本方法纯化获得碧根果致敏原Cari1,单轮制备量可达5 mg以上,且纯度大于95%,蛋白质高级结构未被破坏,能够被全部3名碧根果过敏患者的血清准确识别。结论该纯化方法技术路线简单、设备要求低且单次制备量高,总得率可达65%,操作便捷,为碧根果致敏原Car i 1的相关研究奠定了物质基础。展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer indus...Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer industry and is essential for the development of global agriculture and consequently for maintaining population growth.Furthermore,NH3 can power hydrogen(H2)fueled devices,such as H2 fuel cells(FC),to use the interconversion between chemical energy and electric energy of nitrogen(N2)cycle,which can effectively alleviate the intermittent problems of renewable energy.However,the problems faced by NH3 in storage and release still restrict its development.Herein,this review introduces the latest research and development of electrochemical NH3 synthesis and direct NH3 FC,as well as outlines the technical challenges,possible improvement measures and development perspectives.N2 reduction reaction(NRR)and nitrate reduction reaction(NO3RR)are two potential approaches for electrochemical NH3 synthesis.However,the existing research foundation still faces challenges in achieving high selectivity and efficiency.Direct NH3 FC are easy to transport and are expected to be widely used in mobile energy consuming equipment,but also limited by the lack of highly active and stable NH3 oxidation electrocatalysts.The perspectives of ammonia fuel cells as an alternative green energy are discussed.展开更多
Carbon-free basic dry vibration mix was prepared using middle grade magnesia and fused magnesia as main starting materials,metasilicate replacing phenolic resin as binder,adding a certain amount of medium and low temp...Carbon-free basic dry vibration mix was prepared using middle grade magnesia and fused magnesia as main starting materials,metasilicate replacing phenolic resin as binder,adding a certain amount of medium and low temperature intensifiers. Effects of binder,grain composition,and additives on basic dry vibration mix for tundish were studied,and the bonding mechanism was also analyzed. The results show that:(1) when using metasilicate as binder,the higher strength can be acquired; (2) the suitable grain composition is q=0.48,the critical granularity is 5 or 3 mm,the fines addition is 10%-20% (mass percent); (3) the strength and corrosion resistance of the basic dry vibration mix can be improved by the melting compound of metasilicate and additives; (4) with temperature rising,the bonding type in dry vibration mix changes from cohere bonding to reaction bonding,and then to ceramic bonding at last.展开更多
文摘目的分离纯化碧根果致敏原Car i 1,并对其结构进行表征鉴定。方法以新鲜碧根果果仁为原料,通过粉碎、脱脂、浸提、粗分级、凝胶过滤层析,对碧根果致敏原蛋白Car i 1进行分离纯化。结合十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、液相色谱-串联质谱法和免疫印迹法3种方法对Cari1进行鉴定,并通过圆二色谱仪与紫外分光光度计表征其二、三级结构。结果本方法纯化获得碧根果致敏原Cari1,单轮制备量可达5 mg以上,且纯度大于95%,蛋白质高级结构未被破坏,能够被全部3名碧根果过敏患者的血清准确识别。结论该纯化方法技术路线简单、设备要求低且单次制备量高,总得率可达65%,操作便捷,为碧根果致敏原Car i 1的相关研究奠定了物质基础。
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金support from Suzhou Foreign Academician Workstation(SWY2021002)National Natural Science Foundation of China(No.22202144)Collaborative Innovation Center of Water Treatment Technology and Material,and Innovation Platform for Academicians of Hainan Province.
文摘Ammonia(NH3)is a cornerstone widely used in the modern agriculture and industry,the annual global production gradually increases to almost 200 million tons.Nearly 80%of the produced NH3 is used in the fertilizer industry and is essential for the development of global agriculture and consequently for maintaining population growth.Furthermore,NH3 can power hydrogen(H2)fueled devices,such as H2 fuel cells(FC),to use the interconversion between chemical energy and electric energy of nitrogen(N2)cycle,which can effectively alleviate the intermittent problems of renewable energy.However,the problems faced by NH3 in storage and release still restrict its development.Herein,this review introduces the latest research and development of electrochemical NH3 synthesis and direct NH3 FC,as well as outlines the technical challenges,possible improvement measures and development perspectives.N2 reduction reaction(NRR)and nitrate reduction reaction(NO3RR)are two potential approaches for electrochemical NH3 synthesis.However,the existing research foundation still faces challenges in achieving high selectivity and efficiency.Direct NH3 FC are easy to transport and are expected to be widely used in mobile energy consuming equipment,but also limited by the lack of highly active and stable NH3 oxidation electrocatalysts.The perspectives of ammonia fuel cells as an alternative green energy are discussed.
文摘目的 探讨CAR-T细胞疗法治疗老年急性B淋巴细胞白血病(B-ALL)患者的安全性和有效性。方法 回顾性分析2020年5月—2022年12月苏州大学附属第一医院收治的接受CAR-T治疗的21例老年急性B淋巴细胞白血病患者的临床及随访资料,探讨CAR-T的有效性及安全性。结果 21例老年B-ALL患者CAR-T治疗后细胞因子释放综合征(cytokine release syndrome,CRS),中性粒细胞减少症和中性粒细胞缺乏症发生率分别为:38.1%(8/21),42.9%(9/21)和28.6%(6/21);与CAR-T回输前相比,CAR-T后一周白细胞绝对计数无显著差异,一个月后显著升高(P<0.001),中性粒细胞计数在CAR-T后一周和一个月均无显著差异(P>0.05),C反应蛋白在CAR-T后7天显著升高,30天后显著降低(-3 d vs 7 d,P=0.007;30 d vs 7 d,P=0.000 6);首次输注CAR-T后完全缓解率(complete remission,CR)为85.7%(18/21),中位随访时间为17个月;CAR-T后无进展生存率(progression-free survival,PFS)为81.0%,与性别、CAR-T细胞类型、费城染色体、高肿瘤负荷、桥接造血干细胞移植(HSCT)、治疗次数、LDH值以及血小板计数均无相关性(P>0.05),中位PFS为13个月;R/R B-ALL患者CAR-T治疗后CR率为75%(6/8),PFS率为67.5%,中位PFS时间为12个月;回输CAR-T后复发时间平均为10.2个月。结论 CAR-T细胞疗法用于治疗老年B-ALL患者具有较好的缓解率,为预后差的老年B-ALL患者提供有潜能的治疗手段。
文摘Carbon-free basic dry vibration mix was prepared using middle grade magnesia and fused magnesia as main starting materials,metasilicate replacing phenolic resin as binder,adding a certain amount of medium and low temperature intensifiers. Effects of binder,grain composition,and additives on basic dry vibration mix for tundish were studied,and the bonding mechanism was also analyzed. The results show that:(1) when using metasilicate as binder,the higher strength can be acquired; (2) the suitable grain composition is q=0.48,the critical granularity is 5 or 3 mm,the fines addition is 10%-20% (mass percent); (3) the strength and corrosion resistance of the basic dry vibration mix can be improved by the melting compound of metasilicate and additives; (4) with temperature rising,the bonding type in dry vibration mix changes from cohere bonding to reaction bonding,and then to ceramic bonding at last.