Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism c...Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.展开更多
The meridional gradient of surface air temperature associated with“Warm Arctic–Cold Eurasia”(GradTAE)is closely related to climate anomalies and weather extremes in the mid-low latitudes.However,the Climate Forecas...The meridional gradient of surface air temperature associated with“Warm Arctic–Cold Eurasia”(GradTAE)is closely related to climate anomalies and weather extremes in the mid-low latitudes.However,the Climate Forecast System Version 2(CFSv2)shows poor capability for GradTAE prediction.Based on the year-to-year increment approach,analysis using a hybrid seasonal prediction model for GradTAE in winter(HMAE)is conducted with observed September sea ice over the Barents–Kara Sea,October sea surface temperature over the North Atlantic,September soil moisture in southern North America,and CFSv2 forecasted winter sea ice over the Baffin Bay,Davis Strait,and Labrador Sea.HMAE demonstrates good capability for predicting GradTAE with a significant correlation coefficient of 0.84,and the percentage of the same sign is 88%in cross-validation during 1983−2015.HMAE also maintains high accuracy and robustness during independent predictions of 2016−20.Meanwhile,HMAE can predict the GradTAE in 2021 well as an experiment of routine operation.Moreover,well-predicted GradTAE is useful in the prediction of the large-scale pattern of“Warm Arctic–Cold Eurasia”and has potential to enhance the skill of surface air temperature occurrences in the east of China.展开更多
An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This...An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.展开更多
This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Cen...This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Center Climate System Model(BCC-CSM)—one that is currently participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6),i.e.,BCC-CSM2-MR,and the other,BCC-CSM1.1m,which participated in CMIP5.We show that BCC-CSM2-MR is more skillful in reproducing the climate mean states and standard deviations of soil moisture,with pattern correlations increased and biases reduced significantly.BCC-CSM2-MR performs better in capturing the first two primary patterns of soil moisture anomalies,where the period of the corresponding time series is closer to that of reference data.Comparisons show that BCC-CSM2-MR performs at a high level among multiple models of CMIP6 in terms of centered pattern correlation and“amplitude of variation”(relative standard deviation).In general,the centered pattern correlation of BCC-CSM2-MR,ranging from 0.61 to 0.87,is higher than the multi-model mean of CMIP6,and the relative standard deviation is 0.75,which surmounts the overestimations in most of the CMIP6 models.Due to the vital role played by precipitation in land-atmosphere interaction,possible causes of the improvement of soil moisture simulation are further related to precipitation in BCC-CSM2-MR.The results indicate that a better description of the relationship between soil moisture and precipitation and a better reproduction of the climate mean precipitation by the model may result in the improved performance of soil moisture simulation.展开更多
This study investigates the seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring using snow water equivalent (SWE), snow cover frequency ...This study investigates the seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring using snow water equivalent (SWE), snow cover frequency (SCF), and 500 hPa geopotential height data. It is found that the Eurasian SWE/SCF and circulation dominant modes are stably coupled from autumn to the subsequent spring.The temporal coherence of the seasonal evolution of the dominant modes is examined.The seasonal evolution of the Eurasian circulation and SWE dominant modes exhibit good coherence, whereas the evolution of the Eurasian SCF dominant mode is incoherent during the autumn-winter transition season. This incoherence is associated with a sign-change in the SCF anomalies in Europe during the autumn-winter transition season, which is related to the wind anomalies over Europe. In addition, the surface heat budget associated with the Eurasian SWE/SCF and circulation dominant modes is analyzed. The sensible heat flux (SHF) related to the wind-induced thermal advection dominates the surface heat budget from autumn to the subsequent spring, with the largest effect during winter. The surface net shortwave radiation is mainly modulated by snow cover rather than cloud cover, which is estimated to be as important as, or likely superior to, the SHF for the surface heat budget during spring.The NCEP-NCAR surface heat flux reanalysis data demonstrate a consistency with the SWE/SCF and air temperature observational data, indicating a good capability for snow-atmosphere interaction analysis.展开更多
The eastern Himalayan syntaxis in Namjagbarwa is a high-grade metamorphicterrain formed by the India-Eurasia collision and northward indentation of the Indian continent intoAsia. Right- and left-lateral slip zones wer...The eastern Himalayan syntaxis in Namjagbarwa is a high-grade metamorphicterrain formed by the India-Eurasia collision and northward indentation of the Indian continent intoAsia. Right- and left-lateral slip zones were formed by the indentation on the eastern and westernboundaries of the syntaxis respectively. The Dongjug-Mainling fault zone is the main shear zone onthe western boundary. This fault zone is a left-lateral slip belt with a large component ofthrusting. The kinematics of the fault is consistent with the shortening within the syntaxis, andthe slipping history along it represents the indenting process of the syntaxis. The Ar-Archronological study shows that the age of the early deformation in the Dongjug-Mainling fault zoneranges from 62 to 59 Ma. This evidences that the India-Eurasia collision occurred in the earlyPaleocene in the eastern Himalayan syntaxis.展开更多
The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is i...The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is identified as the warm boundary of the frontal zone with a suitable horizontal temperature gradient and cold advection.We combine the traditional thermal front parameter with temperature advection to first identify the cold frontal zone,and then its eastern and southern boundaries are objectively plotted as a cold front in Eurasia.By comparing different cold front identification methods,the results from this two-step cold front identification method and subjective analysis are more consistent,and the positions of the cold front identified with our method are more reasonable.This objective technique is also applied to a nationwide cold wave event over China.Results show that the horizontal extent and movement of the cold front are in good agreement with the related circulation and the associated cold weather.The proposed method and results in this study may shed light on the rapid identification of cold fronts in operational weather analysis and facilitate further research on the long-term activity characteristics of continental cold fronts.展开更多
Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air...Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air temperature(SAT)variability during the rapid Arctic warming period of 1988/89–2015/16,and found the daily SAT variance,mainly contributed by the sub-seasonal component,shows an increasing and decreasing trend over eastern Eurasia and North America,respectively.Increasing cold extremes(defined as days with daily SAT anomalies below 1.5 standard deviations)dominated the increase of the daily SAT variability over eastern Eurasia,while decreasing cold extremes dominated the decrease of the daily SAT variability over North America.The circulation regime of cold extremes over eastern Eurasia(North America)is characterized by an enhanced high-pressure ridge over the Urals(Alaska)and surface Siberian(Canadian)high.The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region,while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation(PDO)–like sea surface temperature(SST)anomalies over the North Pacific.The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming,reduced the occurrence of extreme cold days,and possibly resulted in the decreasing trend of daily SAT variability in North America.The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America.Therefore,the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.展开更多
The combined effect of the Pacific–Japan (PJ) pattern and Mediterranean–northern Eurasia (MnE) pattern on East Asian surface air temperature (SAT) during summer is investigated using the Japanese 55-year reanalysis ...The combined effect of the Pacific–Japan (PJ) pattern and Mediterranean–northern Eurasia (MnE) pattern on East Asian surface air temperature (SAT) during summer is investigated using the Japanese 55-year reanalysis and Climatic Research Unit SAT data over the period of 1958–2016. The results show that the combination of the two patterns in different phases can result in different SAT anomalies. During the in-phase PJ-MnE years, the overlapping of opposite signs of the atmospheric circulations associated with the PJ and MnE patterns results in weak atmospheric circulation and SAT anomalies in central East Asia;during these years, the significant SAT anomalies are over northern East Asia. In contrast, during the out-of-phase PJ-MnE years, the overlapping of the same signs of the atmospheric circulations associated with the PJ and MnE patterns leads to significant atmospheric circulation and SAT anomalies in central East Asia and northern Asia. The analysis in this study indicates that to better understand and predict the variability of East Asian summer SATs, the combined effect of the PJ and MnE patterns should be taken into account.展开更多
Foraminifer is a very useful microorganism to perform biostratigraphical zonation of the Upper Jurassic. Foraminiferal biozones are calibrated by the ammonite standard zones and can be used for intra- and interregiona...Foraminifer is a very useful microorganism to perform biostratigraphical zonation of the Upper Jurassic. Foraminiferal biozones are calibrated by the ammonite standard zones and can be used for intra- and interregional correlations. Furthermore, the fossil record of foraminiferal faunas is well known among basins of the Northern Eurasia and is also used for accurate palaeoenvironmental, palaeobiogeographical, or biofacial reconstructions. It allows identifying a complex set of biotic and abiotic events which may be used to propose a more general palaeoecoloecological and palaeoceanographical reconstruction of the Subboreal, Boreal, and Arctic seas. Then, the late Kimmeridgian Northern Eurasian seas formed a network of well-connected palaeobasins during the sea-level rise and resulted in rather similar palaeoenvironmental conditions.展开更多
This paper features the structural evolution of the eastern margin of Eurasia in Late Mesozoic and Cenozoic. It is characterized by three stages of development: the riftogenic stage (Jurassic-Early Cretaceous), the pl...This paper features the structural evolution of the eastern margin of Eurasia in Late Mesozoic and Cenozoic. It is characterized by three stages of development: the riftogenic stage (Jurassic-Early Cretaceous), the platform stage (Late Cretaceous) and the neotectonic one (Paleogene-Quarternary). The boundaries between these stages are distinctly fixed by the geological time limits of planetary range. It is demonstrated that the riftogenic and neotectonic stages were characterized by a high degree of geodynamic activity, and the platform one by a decrease in contrast of tectonic movements. The main river net was formed in the Early Cretaceous and in the Neogene. It experienced a serious reconstruction accompanied by the formation of the Amur River valley being similar to the modern one.展开更多
Based on remote sensing snow water equivalent (SWE) data, the simulated SWE in 20C3M experiments from 14 models attend- hag the third phase of the Coupled Models for Inter-comparison Project (CMIP3) was first eval...Based on remote sensing snow water equivalent (SWE) data, the simulated SWE in 20C3M experiments from 14 models attend- hag the third phase of the Coupled Models for Inter-comparison Project (CMIP3) was first evaluated by computing the different percentage, spatial correlation coefficient, and standard deviation of biases during 1979-2000. Then, the diagnosed ten models that performed better simulation in Eurasian SWE were aggregated by arithmetic mean to project the changes of Eurasian SWE in 2002-2060. Results show that SWE will decrease significantly for Eurasia as a whole in the next 50 years. Spatially, significant decreasing trends dominate Eurasia except for significant increase in the northeastern part. Seasonally, decreasing proportion will be greatest in summer indicating that snow cover in wanner seasons is more sensitive to climate warming. However, absolute decreasing trends are not the greatest in winter, but in spring. This is caused by the greater magnitude of negative trends, but smaller positive trends in spring than in winter. The changing characteristics of increasing in eastern Eurasia and decreasing in western Eurasia and over the Qinghai-Tibetan Plateau favor the viewpoint that there will be more rainfall in North China and less in the middle and lower reaches of the Yangtze River in summer. Additionally, the decreasing rate and extent with significant decreasing trends under SRES A2 are greater than those under SRES B1, indicating that the emission of greenhouse gases (GHG) will speed up the decreasing rate of snow cover both temporally and spatially. It is crucial to control the discharge of GHG emissions for mitigating the disappearance of snow cover over Eurasia.展开更多
Variations in the plate convergence direction have generally reflected on the kinematics of the major fault zones developed in the intercontinental parts of the collision zones.The Kuhbanan Fault system is one of the ...Variations in the plate convergence direction have generally reflected on the kinematics of the major fault zones developed in the intercontinental parts of the collision zones.The Kuhbanan Fault system is one of the most important intercontinental faults in the Arabia-Eurasia collision zone with a dextral strike slip mechanism.This fault system is composed of three fault strands including Kuhbanan,Bazargan,and Kerman Faults.Here we used calcite e-twin analysis of the vein samples developed in these fault zones to reconstruct deformation condition and the paleodifferential stress direction and magnitude at the Kuhbanan Fault system.Our results represent 190°C-200°C of the deformation temperature and related 5–6±1 km of deformation depth at the Kuhbanan Fault system.Calculated paleodifferential stress magnitude in the Kuhbanan Fault system using e-twin parameters ranges from 169-196 MPa similar to the inner parts of the orogenic systems.Comparing the data set of the Kuhbanan Fault system with previous studies at the Zagros orogen represents an increase of deformation depth and paleodifferential stress magnitudes from the foreland of the Zagros orogen to its hinterland and finally northward around the Kuhbanan Fault system in the central Iranian blocks.We have also proposed a shift of the stress direction from paleo NE to recent N directed by comparing paleostress direction deduced from the calcite e-twin and recent stress direction calculated from GPS and earthquake data analysis around the Kuhbanan Fault system.This kinematics change due to plate reorganization is in agreement with the observed regional variation in convergence direction all in the Arabia-Eurasia collision zone.展开更多
Eurasian art study is an interdisciplinary approach to the solution of the problems of ethno-national rivalry and contradictions, dominating in the world. Although the roots of Eurasian arts goes back to Aristotelian-...Eurasian art study is an interdisciplinary approach to the solution of the problems of ethno-national rivalry and contradictions, dominating in the world. Although the roots of Eurasian arts goes back to Aristotelian-Avicennian tradition, created in Central Asia (CA) of the eve of the last millennium, the evidence of that common tradition: archaeological, philological, philosophical, linguistic, etc., interconnected with each other and recognized by the diversity of the academic schools of the last century, are not included into educational programs of the universities of the modem times. That miss, creating a gap in the world system of knowledge, restricts development of international affairs and diplomacy in its global significance. To bridge that gap, observing and analysing what was missed in the system of knowledge and how Eurasian arts communities are organizing themselves in CA of pre-soviet times, how they managed to develop through the last century and what is their perspectives now, in globalizing world, is the aim of this paper.展开更多
基金financially supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 131B62KYSB20180003)the Frontier Science Key Project of CAS (Grant No. QYZDY-SSW-DQC021)the State Key Laboratory of Cryospheric Science (Grant No. SKLCSZZ-2022)
文摘Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.
基金This research is supported by the National Key R&D Program of China(Grant No.2022YFF0801604).
文摘The meridional gradient of surface air temperature associated with“Warm Arctic–Cold Eurasia”(GradTAE)is closely related to climate anomalies and weather extremes in the mid-low latitudes.However,the Climate Forecast System Version 2(CFSv2)shows poor capability for GradTAE prediction.Based on the year-to-year increment approach,analysis using a hybrid seasonal prediction model for GradTAE in winter(HMAE)is conducted with observed September sea ice over the Barents–Kara Sea,October sea surface temperature over the North Atlantic,September soil moisture in southern North America,and CFSv2 forecasted winter sea ice over the Baffin Bay,Davis Strait,and Labrador Sea.HMAE demonstrates good capability for predicting GradTAE with a significant correlation coefficient of 0.84,and the percentage of the same sign is 88%in cross-validation during 1983−2015.HMAE also maintains high accuracy and robustness during independent predictions of 2016−20.Meanwhile,HMAE can predict the GradTAE in 2021 well as an experiment of routine operation.Moreover,well-predicted GradTAE is useful in the prediction of the large-scale pattern of“Warm Arctic–Cold Eurasia”and has potential to enhance the skill of surface air temperature occurrences in the east of China.
基金the National Natural Science Foundation of China[grant number 42088101]the Postgraduate Research and Practice Innovation Program of Jiangsu Province[grant number KYCX22_1147].
基金the National Natural Science Foundation of China(Grant Nos.41790471,42075040,and U1902209)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)the National Key Research and Development Program of China(2018YFA0606203,2019YFC1510400).
文摘An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFC1506004 and 2016YFA0602602).
文摘This study provides a comprehensive evaluation of historical surface soil moisture simulation(1979-2012)over Eurasia at annual and seasonal time scales between two medium-resolution versions of the Beijing Climate Center Climate System Model(BCC-CSM)—one that is currently participating in phase 6 of the Coupled Model Intercomparison Project(CMIP6),i.e.,BCC-CSM2-MR,and the other,BCC-CSM1.1m,which participated in CMIP5.We show that BCC-CSM2-MR is more skillful in reproducing the climate mean states and standard deviations of soil moisture,with pattern correlations increased and biases reduced significantly.BCC-CSM2-MR performs better in capturing the first two primary patterns of soil moisture anomalies,where the period of the corresponding time series is closer to that of reference data.Comparisons show that BCC-CSM2-MR performs at a high level among multiple models of CMIP6 in terms of centered pattern correlation and“amplitude of variation”(relative standard deviation).In general,the centered pattern correlation of BCC-CSM2-MR,ranging from 0.61 to 0.87,is higher than the multi-model mean of CMIP6,and the relative standard deviation is 0.75,which surmounts the overestimations in most of the CMIP6 models.Due to the vital role played by precipitation in land-atmosphere interaction,possible causes of the improvement of soil moisture simulation are further related to precipitation in BCC-CSM2-MR.The results indicate that a better description of the relationship between soil moisture and precipitation and a better reproduction of the climate mean precipitation by the model may result in the improved performance of soil moisture simulation.
基金supported by the National Natural Science Foundation of China[grant numbers 4142100441210007]+1 种基金the Chinese Academy of Sciences(CAS)-Peking University(PKU)Partnership Programthe Atmosphere-Ocean Research Center(AORC)and International Pacific Research Center(IPRC)at University of Hawaii
文摘This study investigates the seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring using snow water equivalent (SWE), snow cover frequency (SCF), and 500 hPa geopotential height data. It is found that the Eurasian SWE/SCF and circulation dominant modes are stably coupled from autumn to the subsequent spring.The temporal coherence of the seasonal evolution of the dominant modes is examined.The seasonal evolution of the Eurasian circulation and SWE dominant modes exhibit good coherence, whereas the evolution of the Eurasian SCF dominant mode is incoherent during the autumn-winter transition season. This incoherence is associated with a sign-change in the SCF anomalies in Europe during the autumn-winter transition season, which is related to the wind anomalies over Europe. In addition, the surface heat budget associated with the Eurasian SWE/SCF and circulation dominant modes is analyzed. The sensible heat flux (SHF) related to the wind-induced thermal advection dominates the surface heat budget from autumn to the subsequent spring, with the largest effect during winter. The surface net shortwave radiation is mainly modulated by snow cover rather than cloud cover, which is estimated to be as important as, or likely superior to, the SHF for the surface heat budget during spring.The NCEP-NCAR surface heat flux reanalysis data demonstrate a consistency with the SWE/SCF and air temperature observational data, indicating a good capability for snow-atmosphere interaction analysis.
基金the National Natural Science Foundation of China (Grants 49802020,49732100 , 40172074) the Specific Project forthe Authors of the Best Dissertations of Chinese Universifies and Colleges (200022).
文摘The eastern Himalayan syntaxis in Namjagbarwa is a high-grade metamorphicterrain formed by the India-Eurasia collision and northward indentation of the Indian continent intoAsia. Right- and left-lateral slip zones were formed by the indentation on the eastern and westernboundaries of the syntaxis respectively. The Dongjug-Mainling fault zone is the main shear zone onthe western boundary. This fault zone is a left-lateral slip belt with a large component ofthrusting. The kinematics of the fault is consistent with the shortening within the syntaxis, andthe slipping history along it represents the indenting process of the syntaxis. The Ar-Archronological study shows that the age of the early deformation in the Dongjug-Mainling fault zoneranges from 62 to 59 Ma. This evidences that the India-Eurasia collision occurred in the earlyPaleocene in the eastern Himalayan syntaxis.
基金This work is supported by the National Key Research and Development Pro-gram of China under contract(Grant No.2019YFC1510201 and Grant No.2018YFC1505602).
文摘The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is identified as the warm boundary of the frontal zone with a suitable horizontal temperature gradient and cold advection.We combine the traditional thermal front parameter with temperature advection to first identify the cold frontal zone,and then its eastern and southern boundaries are objectively plotted as a cold front in Eurasia.By comparing different cold front identification methods,the results from this two-step cold front identification method and subjective analysis are more consistent,and the positions of the cold front identified with our method are more reasonable.This objective technique is also applied to a nationwide cold wave event over China.Results show that the horizontal extent and movement of the cold front are in good agreement with the related circulation and the associated cold weather.The proposed method and results in this study may shed light on the rapid identification of cold fronts in operational weather analysis and facilitate further research on the long-term activity characteristics of continental cold fronts.
基金This study was jointly supported by the National Key R&D Program(Grant No.2018YFC1505904)the National Natural Science Foundation of China(Grant Nos.41830969 and 41705052)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2018Z006).
文摘Under recent Arctic warming,boreal winters have witnessed severe cold surges over both Eurasia and North America,bringing about serious social and economic impacts.Here,we investigated the changes in daily surface air temperature(SAT)variability during the rapid Arctic warming period of 1988/89–2015/16,and found the daily SAT variance,mainly contributed by the sub-seasonal component,shows an increasing and decreasing trend over eastern Eurasia and North America,respectively.Increasing cold extremes(defined as days with daily SAT anomalies below 1.5 standard deviations)dominated the increase of the daily SAT variability over eastern Eurasia,while decreasing cold extremes dominated the decrease of the daily SAT variability over North America.The circulation regime of cold extremes over eastern Eurasia(North America)is characterized by an enhanced high-pressure ridge over the Urals(Alaska)and surface Siberian(Canadian)high.The data analyses and model simulations show the recent strengthening of the high-pressure ridge over the Urals was associated with warming of the Barents–Kara seas in the Arctic region,while the high-pressure ridge over Alaska was influenced by the offset effect of Arctic warming over the East Siberian–Chukchi seas and the Pacific decadal oscillation(PDO)–like sea surface temperature(SST)anomalies over the North Pacific.The transition of the PDO-like SST anomalies from a positive to negative phase cancelled the impact of Arctic warming,reduced the occurrence of extreme cold days,and possibly resulted in the decreasing trend of daily SAT variability in North America.The multi-ensemble simulations of climate models confirmed the regional Arctic warming as the driver of the increasing SAT variance over eastern Eurasia and North America and the overwhelming effect of SST forcing on the decreasing SAT variance over North America.Therefore,the regional response of winter cold extremes at midlatitudes to the Arctic warming could be different due to the distinct impact of decadal SST anomalies.
基金jointly supported by the National Natural Science Foundation of China [grant numbers 41522503 and 41421004]
文摘The combined effect of the Pacific–Japan (PJ) pattern and Mediterranean–northern Eurasia (MnE) pattern on East Asian surface air temperature (SAT) during summer is investigated using the Japanese 55-year reanalysis and Climatic Research Unit SAT data over the period of 1958–2016. The results show that the combination of the two patterns in different phases can result in different SAT anomalies. During the in-phase PJ-MnE years, the overlapping of opposite signs of the atmospheric circulations associated with the PJ and MnE patterns results in weak atmospheric circulation and SAT anomalies in central East Asia;during these years, the significant SAT anomalies are over northern East Asia. In contrast, during the out-of-phase PJ-MnE years, the overlapping of the same signs of the atmospheric circulations associated with the PJ and MnE patterns leads to significant atmospheric circulation and SAT anomalies in central East Asia and northern Asia. The analysis in this study indicates that to better understand and predict the variability of East Asian summer SATs, the combined effect of the PJ and MnE patterns should be taken into account.
文摘Foraminifer is a very useful microorganism to perform biostratigraphical zonation of the Upper Jurassic. Foraminiferal biozones are calibrated by the ammonite standard zones and can be used for intra- and interregional correlations. Furthermore, the fossil record of foraminiferal faunas is well known among basins of the Northern Eurasia and is also used for accurate palaeoenvironmental, palaeobiogeographical, or biofacial reconstructions. It allows identifying a complex set of biotic and abiotic events which may be used to propose a more general palaeoecoloecological and palaeoceanographical reconstruction of the Subboreal, Boreal, and Arctic seas. Then, the late Kimmeridgian Northern Eurasian seas formed a network of well-connected palaeobasins during the sea-level rise and resulted in rather similar palaeoenvironmental conditions.
文摘This paper features the structural evolution of the eastern margin of Eurasia in Late Mesozoic and Cenozoic. It is characterized by three stages of development: the riftogenic stage (Jurassic-Early Cretaceous), the platform stage (Late Cretaceous) and the neotectonic one (Paleogene-Quarternary). The boundaries between these stages are distinctly fixed by the geological time limits of planetary range. It is demonstrated that the riftogenic and neotectonic stages were characterized by a high degree of geodynamic activity, and the platform one by a decrease in contrast of tectonic movements. The main river net was formed in the Early Cretaceous and in the Neogene. It experienced a serious reconstruction accompanied by the formation of the Amur River valley being similar to the modern one.
基金supported by the National Natural Science Foundation of China (40901045)
文摘Based on remote sensing snow water equivalent (SWE) data, the simulated SWE in 20C3M experiments from 14 models attend- hag the third phase of the Coupled Models for Inter-comparison Project (CMIP3) was first evaluated by computing the different percentage, spatial correlation coefficient, and standard deviation of biases during 1979-2000. Then, the diagnosed ten models that performed better simulation in Eurasian SWE were aggregated by arithmetic mean to project the changes of Eurasian SWE in 2002-2060. Results show that SWE will decrease significantly for Eurasia as a whole in the next 50 years. Spatially, significant decreasing trends dominate Eurasia except for significant increase in the northeastern part. Seasonally, decreasing proportion will be greatest in summer indicating that snow cover in wanner seasons is more sensitive to climate warming. However, absolute decreasing trends are not the greatest in winter, but in spring. This is caused by the greater magnitude of negative trends, but smaller positive trends in spring than in winter. The changing characteristics of increasing in eastern Eurasia and decreasing in western Eurasia and over the Qinghai-Tibetan Plateau favor the viewpoint that there will be more rainfall in North China and less in the middle and lower reaches of the Yangtze River in summer. Additionally, the decreasing rate and extent with significant decreasing trends under SRES A2 are greater than those under SRES B1, indicating that the emission of greenhouse gases (GHG) will speed up the decreasing rate of snow cover both temporally and spatially. It is crucial to control the discharge of GHG emissions for mitigating the disappearance of snow cover over Eurasia.
基金financial support of Tarbiat Modares University,Iran。
文摘Variations in the plate convergence direction have generally reflected on the kinematics of the major fault zones developed in the intercontinental parts of the collision zones.The Kuhbanan Fault system is one of the most important intercontinental faults in the Arabia-Eurasia collision zone with a dextral strike slip mechanism.This fault system is composed of three fault strands including Kuhbanan,Bazargan,and Kerman Faults.Here we used calcite e-twin analysis of the vein samples developed in these fault zones to reconstruct deformation condition and the paleodifferential stress direction and magnitude at the Kuhbanan Fault system.Our results represent 190°C-200°C of the deformation temperature and related 5–6±1 km of deformation depth at the Kuhbanan Fault system.Calculated paleodifferential stress magnitude in the Kuhbanan Fault system using e-twin parameters ranges from 169-196 MPa similar to the inner parts of the orogenic systems.Comparing the data set of the Kuhbanan Fault system with previous studies at the Zagros orogen represents an increase of deformation depth and paleodifferential stress magnitudes from the foreland of the Zagros orogen to its hinterland and finally northward around the Kuhbanan Fault system in the central Iranian blocks.We have also proposed a shift of the stress direction from paleo NE to recent N directed by comparing paleostress direction deduced from the calcite e-twin and recent stress direction calculated from GPS and earthquake data analysis around the Kuhbanan Fault system.This kinematics change due to plate reorganization is in agreement with the observed regional variation in convergence direction all in the Arabia-Eurasia collision zone.
文摘Eurasian art study is an interdisciplinary approach to the solution of the problems of ethno-national rivalry and contradictions, dominating in the world. Although the roots of Eurasian arts goes back to Aristotelian-Avicennian tradition, created in Central Asia (CA) of the eve of the last millennium, the evidence of that common tradition: archaeological, philological, philosophical, linguistic, etc., interconnected with each other and recognized by the diversity of the academic schools of the last century, are not included into educational programs of the universities of the modem times. That miss, creating a gap in the world system of knowledge, restricts development of international affairs and diplomacy in its global significance. To bridge that gap, observing and analysing what was missed in the system of knowledge and how Eurasian arts communities are organizing themselves in CA of pre-soviet times, how they managed to develop through the last century and what is their perspectives now, in globalizing world, is the aim of this paper.