期刊文献+
共找到22,422篇文章
< 1 2 250 >
每页显示 20 50 100
Phenology of different types of vegetation and their response to climate change in the Qilian Mountains,China
1
作者 ZHAO Kaixin LI Xuemei +1 位作者 ZHANG Zhengrong LIU Xinyu 《Journal of Mountain Science》 SCIE CSCD 2024年第2期511-525,共15页
The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains compl... The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains complex.To this end,we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW),grassland(GSD),and alpine vegetation(ALV))in the QM from 2002 to 2021.Then,we employed path analysis to reveal the direct and indirect impacts of seasonal climate change on vegetation phenology.Additionally,we decomposed the vegetation phenology in a time series using the trigonometric seasonality,Box-Cox transformation,ARMA errors,and Trend Seasonal components model(TBATS).The findings showed a distinct pattern in the vegetation phenology of the QM,characterized by a progressive shift towards an earlier start of the growing season(SOS),a delayed end of the growing season(EOS),and an extended length of the growing season(LOS).The growth cycle of MDW,GSD,and ALV in the QM species is clearly defined.The SOS for MDW and GSD occurred earlier,mainly between late April and August,while the SOS for ALVs occurred between mid-May and mid-August,a one-month delay compared to the other vegetation.The EOS in MDW and GSD were concentrated between late August and April and early September and early January,respectively.Vegetation phenology exhibits distinct responses to seasonal temperature and precipitation patterns.The advancement and delay of SOS were mainly influenced by the direct effect of spring temperatures and precipitation,which affected 19.59%and 22.17%of the study area,respectively.The advancement and delay of EOS were mainly influenced by the direct effect of fall temperatures and precipitation,which affected 30.18%and 21.17%of the area,respectively.On the contrary,the direct effects of temperature and precipitation in summer and winter on vegetation phenology seem less noticeable and were mainly influenced by indirect effects.The indirect effect of winter precipitation is the main factor affecting the advance or delay of SOS,and the area proportions were 16.29%and 23.42%,respectively.The indirect effects of fall temperatures and precipitation were the main factors affecting the delay and advancement of EOS,respectively,with an area share of 15.80%and 21.60%.This study provides valuable insight into the relationship between vegetation phenology and climate change,which can be of great practical value for the ecological protection of the Qinghai-Tibetan Plateau as well as for the development of GSD ecological animal husbandry in the QM alpine pastoral area. 展开更多
关键词 Vegetation phenology Time series decomposition Path Analysis climate change
下载PDF
Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change
2
作者 HAN Qifei XU Wei LI Chaofan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1118-1129,共12页
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr... Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally. 展开更多
关键词 carbon dynamics climate change grassland ecosystems nitrogen deposition water stress index
下载PDF
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
3
作者 SUN Chao BAI Xuelian +2 位作者 WANG Xinping ZHAO Wenzhi WEI Lemin 《Journal of Arid Land》 SCIE CSCD 2024年第8期1044-1061,共18页
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime... Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins. 展开更多
关键词 vegetation variation climate change land use change normalized difference vegetation index(NDVI) enhanced vegetation index(EVI) Shiyang River Basin
下载PDF
The Role of Certificates and Labels for Cocoa in the Face of Climate Change: A Scientific Review
4
作者 Charles Hans Opoku 《American Journal of Climate Change》 2024年第2期281-313,共33页
Climate change threatens cocoa quality, raising concerns regarding sustainable premium cocoa production. Evaluating the effectiveness of certification standards is imperative to address this concern effectively. A mul... Climate change threatens cocoa quality, raising concerns regarding sustainable premium cocoa production. Evaluating the effectiveness of certification standards is imperative to address this concern effectively. A multi-stage method was employed for a systematic review of 39 peer-reviewed articles to highlight the impacts of climate change on the biophysical environment of cocoa and its implications for adapting Geographical Indications (GIs). Additionally, a comprehensive review was conducted on climate-relevant standards of certificates in Ecuador, Indonesia, and Ghana. The findings of this study provide practical insights into possible difficulties that cocoa-producing countries may encounter in maintaining the distinctive flavours and quality trademarks of cocoa in the face of changing climate. Moreover, the findings emphasize the need for producer countries to prioritize viable adaptation and product differentiation strategies that meet sustainable marketing standards to protect GIs or place-based intellectual property. Furthermore, the findings indicate certificates require effective multi-level climate change management and environmental-social-governance principles that promote scientifically proven mitigation strategies, such as increasing soil organic carbon, zero deforestation, and reducing emissions while striving to leverage local adaptation policies to reduce location-specific vulnerability. Finally, certificates can accelerate the expansion, intensification, and redistribution of sustainable production for gains that outweigh the inconveniences caused by climate change. 展开更多
关键词 ADAPTATION Biophysical environment climate change Cocoa Certificates environmental Social Governance MITIGATION Geographical Indications
下载PDF
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
5
作者 ZHAO Xuqin LUO Min +3 位作者 MENG Fanhao SA Chula BAO Shanhu BAO Yuhai 《Journal of Arid Land》 SCIE CSCD 2024年第1期46-70,共25页
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation... Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas. 展开更多
关键词 gross primary productivity(GPP) climate change warming aridification areas drought sensitivity cumulative effect duration(CED) Mongolian Plateau
下载PDF
Impacts of climate change and human activities on vegetation dynamics on the Mongolian Plateau, East Asia from 2000 to 2023
6
作者 YAN Yujie CHENG Yiben +3 位作者 XIN Zhiming ZHOU Junyu ZHOU Mengyao WANG Xiaoyu 《Journal of Arid Land》 SCIE CSCD 2024年第8期1062-1079,共18页
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the... The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau. 展开更多
关键词 kernel normalized difference vegetation index(kNDVI) human activities climate change partial correlation analysis composite correlation analysis residual analysis Mongolian Plateau
下载PDF
A Systematic Literature Review of the Impact of Climate Change on Menopause: Altering the Age, Severity of Symptoms and Long-Term Effects
7
作者 Vaidehi Chauhan Sameena Rahman 《Open Journal of Obstetrics and Gynecology》 2024年第7期1018-1026,共9页
Objective: This systematic review investigates the impact of climate change on menopause, focusing on the correlation between geographical location—considering altitude, temperature, humidity, and annual temperature ... Objective: This systematic review investigates the impact of climate change on menopause, focusing on the correlation between geographical location—considering altitude, temperature, humidity, and annual temperature range—and women’s menopausal experiences. This study aims to interpret how these environmental factors influence the age of onset, severity of symptoms such as hot flushes and night sweats, and other long-term effects of menopause. Understanding these relationships addresses a significant gap in current knowledge and could guide future public health strategies. Methods: Through a comprehensive analysis of three cross-continental studies involving 1500 postmenopausal women from Spain, South American countries (Ecuador, Panama, Chile), various climates in Türkiye (Black Sea, Mediterranean, Continental), and the United Arab Emirates (UAE), this review evaluates diverse environmental impacts. Studies were selected based on their methodological rigor, geographical diversity, and focus on the unique and personal experiences of menopause. Data was collected via questionnaires and routine medical checkups, analyzing demographic, lifestyle, mood, symptom severity, and onset age variables. Results: Preliminary analysis indicates that 52.5% of participants from Spanish-speaking countries and the UAE reported vasomotor symptoms, with those in higher temperatures and lower altitudes experiencing exacerbated symptoms. Notably, Mediterranean climates were associated with an earlier menopause onset. Seasonal changes had minimal impact across all regions, suggesting lifestyle and other environmental factors play a more significant role. Conclusions: The findings highlight a clear link between climate-related geographical factors and the menopausal experience. Women in warmer, lower-altitude regions suffer more severe symptoms, while those in Mediterranean climates face earlier onset. The absence of significant seasonal variations across the studies underscores the predominance of lifestyle and environmental factors over purely climatic conditions. These insights pave the way for targeted interventions and support the need for further public health research into the complex interactions between climate change and menopause. 展开更多
关键词 MENOPAUSE climate change Women’s Health PERIMENOPAUSE
下载PDF
Pro-Environmental Civic Participation in the USA: The Effects of Social Media, Pro-Environmental Lifestyle and Climate Experiences
8
作者 Rita Mano 《American Journal of Climate Change》 2024年第1期31-46,共16页
This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and cl... This study addresses the link between social media use and pro-environmental civic participation considering the moderating effect of social media affordances (public realm) on one hand, and lifestyle behaviors and climate change experiences (personal realm) on the other. We combine communication theory and behavioral models and using a sample of USA individuals (N = 7225) based on the American Trends Panel to predict variations in pro-environmental behavior. We show that social networks rather than information are more effective in predicting pro-environmental behavior. Moreover, a pro-environmental lifestyle as well as climate change experiences at the community level increase the likelihood for pro-environmental participation. However, affordances related to socioeconomic variations generate variations to pro-environmental civic participation. We conclude that in order to capture the depth of pro-environmental civic participation, it is necessary to theoretically and empirically bridge between private and public expressions of pro-environmental awareness. 展开更多
关键词 Pro-environmental Behavior SOCIO-ECONOMIC Digital Information Digital Networks Private Expressions Public Expressions climate changes USA
下载PDF
Socioenvironmental Drivers of Farmers’ Perceptions of Climate Change Risk in Agroforestry Parklands of West Atacora in Benin (West Africa)
9
作者 Amos Baninwain Nambima Thierry Dèhouégnon Houehanou +3 位作者 Narcisse Yehouenou Dowo Michée Adjacou Abdul Sodick Alassiri Gérard Gouwakinnou 《Open Journal of Ecology》 2024年第1期54-65,共12页
Throughout the world, climate change is threatening the human population. In West Africa, smallholder farmers in indigenous agricultural societies typically hold considerable knowledge. Therefore, this study was condu... Throughout the world, climate change is threatening the human population. In West Africa, smallholder farmers in indigenous agricultural societies typically hold considerable knowledge. Therefore, this study was conducted in West Atacora of Benin Republic to assess the drivers of farmers’ perceptions of climate change risk. We used a random sampling technique to select 360 households’ heads who were interviewed regarding different climate change risks perception. Binomial logistic regression was used to assess the drivers of farmers’ perceptions of climate change risks. The results showed that the farmers in drier areas had a higher perception of the global risk of climate change than those in humid areas. The same trend was observed for the seven different individual’s climate change risk investigated. The study identified also membership of farm organizations as main sociodemographic characteristic that explains farmers’ perception of climate change risk perception. These findings are helpful tools to sensitize the local people on climate change risk and cope with the risk in agricultural lands. 展开更多
关键词 climate change Risk Local Ecological Knowledge Socio-Demographic Characteristics BENIN West Africa
下载PDF
Impact of Climate Change on Mountaineering Activities in Haba Snow Mountain Reserve and the Development of Surrounding Communities
10
作者 Chen Cao 《Journal of Environmental Protection》 2024年第6期731-737,共7页
In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow... In the context of global climate change, this study reviews and discusses the three aspects of ecology, economic development of surrounding communities, ecological balance and snow mountain activities in the Haba Snow Mountain Reserve through literature collation and research. 1) The Hengduan Mountain Plate of Haba Snow Mountain is affected by the high altitude temperate monsoon and is sensitive to climate change. There has been continuous glacier melting and snow line fluctuations. Although there is no forest line movement, the vegetation at the junction of the forest line has increased. 2) Human activities in the Haba Snow Mountain Reserve have shown an active trend, and the Biomass in various ecosystems in the region is inversely correlated. 3) Climate change will have a negative impact on landscape attraction and tourism safety in snowy mountain areas. 4) Haba Snow Mountain Reserve needs more perfect biological species statistical research and dynamic vegetation research to support the establishment of a perfect ecological protection strategy and ecological early warning in the region. 5) As the frequency of tourist activities in the Haba Protected Area increases, corresponding environmental protection signage, garbage cleaning methods, and tourist education have not been synchronizedly improved. 展开更多
关键词 Haba Snow Mountain climate change Snow Mountain Ecology Snow Mountain Activities
下载PDF
Differential response of radial growth and δ^(13)C in Qinghai spruce(Picea crassifolia) to climate change on the southern and northern slopes of the Qilian Mountains in Northwest China
11
作者 Li Qin Huaming Shang +4 位作者 Weiping Liu Yuting Fan Kexiang Liu Tongwen Zhang Ruibo Zhang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期205-218,共14页
Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q... Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change. 展开更多
关键词 Tree rings Qinghai spruce(Picea crassifolia Kom.) Stable carbon isotope(δ^(13)C) Qilian Mountains:climate change
下载PDF
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
12
作者 LU Haitian ZHAO Ruifeng +3 位作者 ZHAO Liu LIU Jiaxin LYU Binyang YANG Xinyue 《Journal of Arid Land》 SCIE CSCD 2024年第6期798-815,共18页
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp... Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity. 展开更多
关键词 surface water area terrestrial water storage Open-surface Water Detection Method with Enhanced Impurity Control method Google Earth Engine climate change human activities inland arid and semi-arid areas
下载PDF
Eternal Climate Change Patterns and the Causes and Countermeasures of Global Climate Change
13
作者 Cuixiang Zhong 《Journal of Environmental Science and Engineering(B)》 2024年第1期9-20,共12页
It is an objective fact that the weather is unpredictable.Even the famous meteorologist,Academician Chu Ko Chen,has only a partial understanding of the changing laws of wind and rain.Even though ancient people summari... It is an objective fact that the weather is unpredictable.Even the famous meteorologist,Academician Chu Ko Chen,has only a partial understanding of the changing laws of wind and rain.Even though ancient people summarized the 24 solar terms by observing the annual activities of the sun for a long time,because they ignored the impact of the activities of the moon on the Earth’s climate change on a small scale,the 24 solar terms they summarized often could not accurately predict the change of the Earth’s climate.Therefore,the author studied the influence of lunar activities on the Earth’s climate change,finds out the law of the influence of lunar activities on the Earth’s climate change on a small scale,and summarizes the eternal climate change pattern determined by the activities of the sun and the moon.In addition,the author also reveals the causes and countermeasures of global warming and the frequent occurrence of extreme weather as well as environmental change. 展开更多
关键词 Eternal climate change patterns global warming extreme weather abrupt environmental changes CAUSES countermeasures.
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
14
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery Electric Vehicles (BEVS) GASOLINE DIESEL Hybrid Electric Vehicles (HEVs) Plug-In Hybrid Vehicles (PHEVs) climate change Carbon Dioxide (CO2) Emissions
下载PDF
Impacts of Climate Change on Seawater Temperature and Total Dissolved Solids: Challenges and Sustainable Solutions for Reverse Osmosis Desalination in the Arabian Gulf Region
15
作者 Ahmed Al Kubaish Jamal Salama 《Computational Water, Energy, and Environmental Engineering》 2024年第1期86-93,共8页
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig... This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf. 展开更多
关键词 climate change TEMPERATURE Reverse Osmosis Seawater Total Dissolved Solids DESALINATION
下载PDF
Review on the Impact of Climate Change on Great Lakes Region’s Agriculture and Water Resources
16
作者 Zeyu Shen 《Journal of Geoscience and Environment Protection》 2024年第7期165-176,共12页
This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technol... This study investigates the multifaceted impacts of climate change on the Midwest region of the United States, particularly the rising temperatures and precipitation brought about by hot weather activities and technological advances since the 19th century. From 1900 to 2010, temperatures in the Midwest rose by an average of 1.5 degrees Fahrenheit, which would also lead to an increase in greenhouse gas emissions. Precipitation is also expected to increase due to increased storm activity and changes in regional weather patterns. This paper explores the impact of these changes on urban and agricultural areas. In urban areas such as the city of Chicago, runoff from the increasing impervious surface areas poses challenges to the drainage system, and agriculture areas are challenged by soil erosion, nutrient loss, and fewer planting days due to excessive rainfall. Sustainable solutions such as no-till agriculture and the creation of grassland zones are discussed. Using historical data, recent climate studies and projections, the paper Outlines ways to enhance the Midwest’s ecology and resilience to climate change. 展开更多
关键词 climate change Midwest USA Agricultural Impacts Urban Runoff Sustainable Practices Precipitation Patterns Temperature Increase Greenhouse Gas Emissions Soil Erosion Water Management
下载PDF
Quantifying major sources of uncertainty in projecting the impact of climate change on wheat grain yield in dryland environments
17
作者 Reza DEIHIMFARD Sajjad RAHIMI-MOGHADDAM +1 位作者 Farshid JAVANSHIR Alireza PAZOKI 《Journal of Arid Land》 SCIE CSCD 2023年第5期545-561,共17页
Modelling the impact of climate change on cropping systems is crucial to support policy-making for farmers and stakeholders.Nevertheless,there exists inherent uncertainty in such cases.General Circulation Models(GCMs)... Modelling the impact of climate change on cropping systems is crucial to support policy-making for farmers and stakeholders.Nevertheless,there exists inherent uncertainty in such cases.General Circulation Models(GCMs)and future climate change scenarios(different Representative Concentration Pathways(RCPs)in different future time periods)are among the major sources of uncertainty in projecting the impact of climate change on crop grain yield.This study quantified the different sources of uncertainty associated with future climate change impact on wheat grain yield in dryland environments(Shiraz,Hamedan,Sanandaj,Kermanshah and Khorramabad)in eastern and southern Iran.These five representative locations can be categorized into three climate classes:arid cold(Shiraz),semi-arid cold(Hamedan and Sanandaj)and semi-arid cool(Kermanshah and Khorramabad).Accordingly,the downscaled daily outputs of 29 GCMs under two RCPs(RCP4.5 and RCP8.5)in the near future(2030s),middle future(2050s)and far future(2080s)were used as inputs for the Agricultural Production Systems sIMulator(APSIM)-wheat model.Analysis of variance(ANOVA)was employed to quantify the sources of uncertainty in projecting the impact of climate change on wheat grain yield.Years from 1980 to 2009 were regarded as the baseline period.The projection results indicated that wheat grain yield was expected to increase by 12.30%,17.10%,and 17.70%in the near future(2030s),middle future(2050s)and far future(2080s),respectively.The increases differed under different RCPs in different future time periods,ranging from 11.70%(under RCP4.5 in the 2030s)to 20.20%(under RCP8.5 in the 2080s)by averaging all GCMs and locations,implying that future wheat grain yield depended largely upon the rising CO2 concentrations.ANOVA results revealed that more than 97.22% of the variance in future wheat grain yield was explained by locations,followed by scenarios,GCMs,and their interactions.Specifically,at the semi-arid climate locations(Hamedan,Sanandaj,Kermanshah and Khorramabad),most of the variations arose from the scenarios(77.25%),while at the arid climate location(Shiraz),GCMs(54.00%)accounted for the greatest variation.Overall,the ensemble use of a wide range of GCMs should be given priority to narrow the uncertainty when projecting wheat grain yield under changing climate conditions,particularly in dryland environments characterized by large fluctuations in rainfall and temperature.Moreover,the current research suggested some GCMs(e.g.,the IPSL-CM5B-LR,CCSM4,and BNU-ESM)that made moderate effects in projecting the impact of climate change on wheat grain yield to be used to project future climate conditions in similar environments worldwide. 展开更多
关键词 wheat grain yield climate change Agricultural Production Systems sIMulator(APSIM)-wheat model General Circulation Models(GCMs) arid climate semi-arid climate Iran
下载PDF
The impact of climate change on groundwater quantity and quality in a semi-arid environment:a case study of Ain Azel plain(Northeast Algeria)
18
作者 Hasna Aouati Abdeslam Demdoum +1 位作者 Houria Kada Riad Kouadra 《Acta Geochimica》 EI CAS CSCD 2023年第6期1065-1078,共14页
In the last decade,North Africa has witnessed significant population growth,particularly those bordering the Mediterranean Sea.This led to increased demand for groundwater,which is an essential source for various wate... In the last decade,North Africa has witnessed significant population growth,particularly those bordering the Mediterranean Sea.This led to increased demand for groundwater,which is an essential source for various water uses such as drinking water supplies and irrigation.Generally,human activities play a crucial role in the different quantitative and qualitative changes in groundwater.Now,climate changes such as a decrease in precipitation have also led to a shortage of water resources and a decline in the groundwater table.This paper presents the impact of climate changes on groundwater resources in the Ain Azel region,Setif,northeastern Algeria.The analysis of longterm spatiotemporal variability in rainfall over 63 years(1958–2021)revealed a significant decline in groundwater recharge,especially after 2013.In contrast,the Pettitt and Mann–Kendall tests show increased temperatures with breaks between 1984 and 1986.A piezometric analysis of the alluvial aquifer demonstrated a significant decline in groundwater levels in the last 20 years.Hydrochemical analysis showed that groundwater in the region is dominated by Ca–Mg–Cl water type,which indicates the presence of water salinity phenomenon.Water Quality Index(WQI)analysis showed the deterioration of groundwater in the area,which may be caused by several factors:brine intrusion from the Salt Lake(Sebkha)in the north;the dissolution of evaporites(Triassic)and/or anthropogenic sources of agricultural and industrial origin.Our findings provide an overview summarizing the state of groundwater,which will help improve groundwater resource management in the region in the coming years. 展开更多
关键词 climate changes Groundwater resources Pettitt and Mann–Kendall tests WQI Salt Lake
下载PDF
Challenges and Countermeasures for Integrating the Protection of Environmental Rights into Actions for Addressing Climate Change
19
作者 秦天宝 袁野阳光 《The Journal of Human Rights》 2023年第4期869-893,共25页
Climate change,which is the result of human activities,has wide-ranging impact.It poses a serious threat to human rights.Environmental rights are where the protection of the ecological environment and the development ... Climate change,which is the result of human activities,has wide-ranging impact.It poses a serious threat to human rights.Environmental rights are where the protection of the ecological environment and the development of human rights intersect.In view of the close relationship between the actions for addressing climate change and environmental rights,China should integrate the protection of environmental rights into the actions for addressing climate change,so as to achieve simultaneous development of both.In the process of coping with climate change,the right to climate stability that mainly pursues a“harmless”environment and the right to a more livable climate that pursues a“beautiful eco-environment”are specific manifestations of environmental rights and should be the priority of protection efforts.However,there are still some obstacles to achieving the coordinated development of the efforts to address climate change and the protection of environmental rights because traditional rights protection methods mainly give individuals subjective rights with the power to claim and are thus difficult to meet the needs of environmental rights protection in the context of climate change,and there are inherent value differences between responding to climate change and the realization of other human rights.Building a multi-level national obligation system to address climate change,giving full play to the role of courts in responding to climate change through moderate judicial activism,and coordinating the efforts to cope with climate change and the development of human rights under the guidance of a holistic system view are effective ways to overcome the aforementioned difficulties. 展开更多
关键词 actions for addressing climate change environmental rights judicial activism holistic system view
下载PDF
The Global Energy and Water Exchanges(GEWEX)Project in Central Asia:The Case for a Regional Hydroclimate Project
20
作者 Michael BRODY Maksim KULIKOV +1 位作者 Sagynbek ORUNBAEV Peter J.VAN OEVELEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期777-783,共7页
Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of... Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of the region’s economy.By its nature of intensive water use,agriculture is extremely vulnerable to climate change.Population growth and irrigation development have significantly increased the demand for water in the region.Major climate change issues include melting glaciers and a shrinking snowpack,which are the foundation of the region’s water resources,and a changing precipitation regime.Most glaciers are located in Kyrgyzstan and Tajikistan,leading to transboundary water resource issues.Summer already has extremely high temperatures.Analyses indicate that Central Asia has been warming and precipitation might be increasing.The warming is expected to increase,but its spatial and temporal distribution depends upon specific global scenarios.Projections of future precipitation show significant uncertainties in type,amount,and distribution.Regional Hydroclimate Projects(RHPs)are an approach to studying these issues.Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues.It was followed up with an online workshop and then,in 2023,an in-person workshop,held in Tashkent,Uzbekistan.Priorities for the Global Energy and Water Exchanges(GEWEX)project for the region include both observations and modeling,as well as development of better and additional precipitation observations,all of which are topics for the next workshop.A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation. 展开更多
关键词 GEWEX Central Asia climate change AGRICULTURE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部