期刊文献+
共找到142,936篇文章
< 1 2 250 >
每页显示 20 50 100
Global Change in Agricultural Flash Drought over the 21st Century 被引量:1
1
作者 Emily BLACK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期209-220,I0002-I0019,共30页
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop... Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa. 展开更多
关键词 flash drought climate change soil moisture agricultural drought CMIP
下载PDF
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
2
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management thermal runaway propagation Fire resistance ENCAPSULATION
下载PDF
Surface air temperature change in the Wuyi Mountains,southeast China
3
作者 QIN Yihui WEI Yuxing +6 位作者 LU Jiayi MAO Jiahui CHEN Xingwei GAO Lu CHEN Ying LIU Meibing DENG Haijun 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1992-2004,共13页
Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 ... Detecting changes in surface air temperature in mid-and low-altitude mountainous regions is essential for a comprehensive understanding of warming trend with altitude.We use daily surface air temperature data from 64 meteorological stations in Wuyi Mountains and its adjacent regions to analyze the spatio-temporal patterns of temperature change.The results show that Wuyi Mountains have experienced significant warming from 1961 to 2018.The warming trend of the mean temperature is 0.20℃/decade,the maximum temperature is 0.17℃/decade,and the minimum temperature is 0.26℃/decade.In 1961-1990,more than 63%of the stations showed a decreasing trend in annual mean temperature,mainly because the maximum temperature decreased during this period.However,in 1971-2000,1981-2010 and 1991-2018,the maximum,minimum and mean temperatures increased.The fastest increasing trend of mean temperature occurred in the southeastern coastal plains,the quickest increasing trend of maximum temperature occurred in the northwestern mountainous region,and the increase of minimum temperature occurred faster in the southeastern coastal and northwestern mountainous regions than that in the central area.Meanwhile,this study suggests that elevation does not affect warming in the Wuyi Mountains.These results are beneficial for understanding climate change in humid subtropical middle and low mountains. 展开更多
关键词 Climate change Surface air temperature Temporal and spatial changes Mann-Kendall nonparametric test Wuyi Mountains
下载PDF
Comprehending drivers of land use land cover change from 1999 to 2021 in the Pithoragarh District,Kumaon Himalaya,Uttarakhand,India
4
作者 Mahika PHARTIYAL Sanjeev SHARMA 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2394-2407,共14页
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an... The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region. 展开更多
关键词 Himalayan region Land use/land cover change Anthropogenic factors Climate change Socioecological system
下载PDF
The Global Energy and Water Exchanges(GEWEX)Project in Central Asia:The Case for a Regional Hydroclimate Project
5
作者 Michael BRODY Maksim KULIKOV +1 位作者 Sagynbek ORUNBAEV Peter J.VAN OEVELEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期777-783,共7页
Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of... Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of the region’s economy.By its nature of intensive water use,agriculture is extremely vulnerable to climate change.Population growth and irrigation development have significantly increased the demand for water in the region.Major climate change issues include melting glaciers and a shrinking snowpack,which are the foundation of the region’s water resources,and a changing precipitation regime.Most glaciers are located in Kyrgyzstan and Tajikistan,leading to transboundary water resource issues.Summer already has extremely high temperatures.Analyses indicate that Central Asia has been warming and precipitation might be increasing.The warming is expected to increase,but its spatial and temporal distribution depends upon specific global scenarios.Projections of future precipitation show significant uncertainties in type,amount,and distribution.Regional Hydroclimate Projects(RHPs)are an approach to studying these issues.Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues.It was followed up with an online workshop and then,in 2023,an in-person workshop,held in Tashkent,Uzbekistan.Priorities for the Global Energy and Water Exchanges(GEWEX)project for the region include both observations and modeling,as well as development of better and additional precipitation observations,all of which are topics for the next workshop.A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation. 展开更多
关键词 GEWEX Central Asia climate change AGRICULTURE
下载PDF
Habitable Land Will Soon Become the World’s Scarcest Resource: Why Appalachia Should Choose Climate Change Havens over Millionaire Estates and Golf Courses
6
作者 Elizabeth C. Hirschman Devonte Booth +5 位作者 Tzu-Wei Huang Kamryn Livingston Kobe McReynolds Rachel Six Logan Smith Olivia Toomer 《Journal of Environmental Protection》 2024年第6期716-730,共15页
This research advocates for the construction of Climate Change Haven Communities across the Appalachian Region. The proposed development plan can be extended to the northern tier states across the US and also to the n... This research advocates for the construction of Climate Change Haven Communities across the Appalachian Region. The proposed development plan can be extended to the northern tier states across the US and also to the northern and mountainous regions of Europe and Asia. We present an analogy to the earlier climate change period of the Last Glacial Maximum/“Ice Age” in which these same northern regions of the planet were covered in ice sheets making them uninhabitable for most humans and many plant and animal species. In some significant ways, the Ice Age scenario can be a reverse-model for our current climate crisis. We also advocate strongly for the prevention of upscale real estate development projects in these same regions of the globe, as these will foreclose the possibility of safely sheltering the millions of persons who will be displaced by climate change over the next 5 to 10 years. 展开更多
关键词 Climate change APPALACHIA Habitable Land Climate change Haven Communities Two-Caste Economic System Migration Ice Age Analogies
下载PDF
The multiple roles of crop structural change in productivity,nutrition and environment in China:A decomposition analysis
7
作者 Xiangyang Zhang Yumei Zhang Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1763-1773,共11页
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut... China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs. 展开更多
关键词 CROP structural change land productivity NUTRITION carbon emissions
下载PDF
Changes in Spring Snow Cover over the Eastern and Western Tibetan Plateau and Their Associated Mechanism
8
作者 Fangchi LIU Xiaojing JIA Wei DONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期959-973,共15页
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate... The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP. 展开更多
关键词 snow cover Tibetan Plateau long-term changes SPRING
下载PDF
Response of vegetation variation to climate change and human activities in the Shiyang River Basin of China during 2001-2022
9
作者 SUN Chao BAI Xuelian +2 位作者 WANG Xinping ZHAO Wenzhi WEI Lemin 《Journal of Arid Land》 SCIE CSCD 2024年第8期1044-1061,共18页
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime... Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins. 展开更多
关键词 vegetation variation climate change land use change normalized difference vegetation index(NDVI) enhanced vegetation index(EVI) Shiyang River Basin
下载PDF
Glacier area change (1993-2019) and its relationship to debris cover, proglacial lakes, and morphological parameters in the Chandra-Bhaga Basin, Western Himalaya, India
10
作者 VATSAL Sarvagya AZAM Mohd Farooq +5 位作者 BHARDWAJ Anshuman MANDAL Arindan BAHUGUNA Ishmohan RAMANATHAN Alagappan RAJU N.Janardhana TOMAR Sangita Singh 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1287-1306,共20页
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years... Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin. 展开更多
关键词 GLACIER Area change Debris cover MORPHOLOGY Proglacial lake
下载PDF
Precipitation and anthropogenic activities regulate the changes of NDVI in Zhegucuo Valley on the southern Tibetan Plateau
11
作者 ZHAO Wanglin WANG Hengying +1 位作者 ZHANG Huifang ZHANG Lin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期607-618,共12页
Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may... Whether climate change or anthropogenic activities play a more pivotal role in regulating vegetation growth on the Tibetan Plateau is still controversial.A better understanding on grassland changes at a fine scale may provide important guidance for local government policy and grassland management.Using two of the most reliable satellite NDVI products(MODIS NDVI and SPOT NDVI),we evaluated the dynamic of grasslands in the Zhegucuo valley on the southern Tibetan Plateau from 2000 to 2020,and analyzed its driving factors and relative influences of climate change and anthropogenic activities.Here,the key indicators of climate change were assumed to be precipitation and temperature.The main results were:(1)the grassland NDVI in Zhegucuo valley did not reflect a significant temporal change during the last 21 years.The variation of precipitation during the early growing season(GSP)resembled that of NDVI,and the GSP was positively correlated with NDVI.At the pixel level,the partial correlation analysis showed that 37.79%of the pixels depicted a positive relationship between GSP and NDVI,while 11.32%of the pixels showed a negative relationship between temperature during the early growing season(GST)and NDVI.(2)In view of the spatial distribution,the areas mainly controlled by GSP were generally distributed in the southern part,while those affected by GST stood in the eastern part,mainly around the Zhegucuo lake where most population in Cuomei County settled down.(3)Decreasing NDVI trends were mainly occurred in alpine steppe at lower elevations rather than alpine meadow at higher elevations.(4)The residual trend(RESTREND)analysis further indicated that the anthropogenic activities played a more pivotal role in regulating the annual changes of NDVI rather than climate factors in this area.Future studies should pay more attention on climate extremes rather than the simple temporal trends.Also,the influence of human activities on alpine grassland needs to be accessed and fully considered in future sustainable management. 展开更多
关键词 Anthropogenic activities Climate change PRECIPITATION FENCING Vegetation degradation
下载PDF
Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change
12
作者 Jingcheng Wang Zhentong Liu +2 位作者 Wei Chen Hongliang Chen Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1540-1553,共14页
A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st... A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality. 展开更多
关键词 TUNDISH ladle change REOXIDATION multiphase flow numerical simulation
下载PDF
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
13
作者 WANG Xingbo ZHANG Shuanghu TIAN Yiman 《Journal of Arid Land》 SCIE CSCD 2024年第4期461-482,共22页
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in... Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin. 展开更多
关键词 economic belt runoff change influencing assessment CLIMATE human activities
下载PDF
Land use and cover change and influencing factor analysis in the Shiyang River Basin,China
14
作者 ZHAO Yaxuan CAO Bo +4 位作者 SHA Linwei CHENG Jinquan ZHAO Xuanru GUAN Weijin PAN Baotian 《Journal of Arid Land》 SCIE CSCD 2024年第2期246-265,共20页
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ... Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas. 展开更多
关键词 land use and cover classification land use and cover change(LUCC) climate change random forest accuracy assessment three-dimensional sampling method Shiyang River Basin
下载PDF
A Systematic Literature Review of the Impact of Climate Change on Menopause: Altering the Age, Severity of Symptoms and Long-Term Effects
15
作者 Vaidehi Chauhan Sameena Rahman 《Open Journal of Obstetrics and Gynecology》 2024年第7期1018-1026,共9页
Objective: This systematic review investigates the impact of climate change on menopause, focusing on the correlation between geographical location—considering altitude, temperature, humidity, and annual temperature ... Objective: This systematic review investigates the impact of climate change on menopause, focusing on the correlation between geographical location—considering altitude, temperature, humidity, and annual temperature range—and women’s menopausal experiences. This study aims to interpret how these environmental factors influence the age of onset, severity of symptoms such as hot flushes and night sweats, and other long-term effects of menopause. Understanding these relationships addresses a significant gap in current knowledge and could guide future public health strategies. Methods: Through a comprehensive analysis of three cross-continental studies involving 1500 postmenopausal women from Spain, South American countries (Ecuador, Panama, Chile), various climates in Türkiye (Black Sea, Mediterranean, Continental), and the United Arab Emirates (UAE), this review evaluates diverse environmental impacts. Studies were selected based on their methodological rigor, geographical diversity, and focus on the unique and personal experiences of menopause. Data was collected via questionnaires and routine medical checkups, analyzing demographic, lifestyle, mood, symptom severity, and onset age variables. Results: Preliminary analysis indicates that 52.5% of participants from Spanish-speaking countries and the UAE reported vasomotor symptoms, with those in higher temperatures and lower altitudes experiencing exacerbated symptoms. Notably, Mediterranean climates were associated with an earlier menopause onset. Seasonal changes had minimal impact across all regions, suggesting lifestyle and other environmental factors play a more significant role. Conclusions: The findings highlight a clear link between climate-related geographical factors and the menopausal experience. Women in warmer, lower-altitude regions suffer more severe symptoms, while those in Mediterranean climates face earlier onset. The absence of significant seasonal variations across the studies underscores the predominance of lifestyle and environmental factors over purely climatic conditions. These insights pave the way for targeted interventions and support the need for further public health research into the complex interactions between climate change and menopause. 展开更多
关键词 MENOPAUSE Climate change Women’s Health PERIMENOPAUSE
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management
16
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy thermo-regulation
下载PDF
Phenology of different types of vegetation and their response to climate change in the Qilian Mountains,China
17
作者 ZHAO Kaixin LI Xuemei +1 位作者 ZHANG Zhengrong LIU Xinyu 《Journal of Mountain Science》 SCIE CSCD 2024年第2期511-525,共15页
The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains compl... The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains complex.To this end,we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW),grassland(GSD),and alpine vegetation(ALV))in the QM from 2002 to 2021.Then,we employed path analysis to reveal the direct and indirect impacts of seasonal climate change on vegetation phenology.Additionally,we decomposed the vegetation phenology in a time series using the trigonometric seasonality,Box-Cox transformation,ARMA errors,and Trend Seasonal components model(TBATS).The findings showed a distinct pattern in the vegetation phenology of the QM,characterized by a progressive shift towards an earlier start of the growing season(SOS),a delayed end of the growing season(EOS),and an extended length of the growing season(LOS).The growth cycle of MDW,GSD,and ALV in the QM species is clearly defined.The SOS for MDW and GSD occurred earlier,mainly between late April and August,while the SOS for ALVs occurred between mid-May and mid-August,a one-month delay compared to the other vegetation.The EOS in MDW and GSD were concentrated between late August and April and early September and early January,respectively.Vegetation phenology exhibits distinct responses to seasonal temperature and precipitation patterns.The advancement and delay of SOS were mainly influenced by the direct effect of spring temperatures and precipitation,which affected 19.59%and 22.17%of the study area,respectively.The advancement and delay of EOS were mainly influenced by the direct effect of fall temperatures and precipitation,which affected 30.18%and 21.17%of the area,respectively.On the contrary,the direct effects of temperature and precipitation in summer and winter on vegetation phenology seem less noticeable and were mainly influenced by indirect effects.The indirect effect of winter precipitation is the main factor affecting the advance or delay of SOS,and the area proportions were 16.29%and 23.42%,respectively.The indirect effects of fall temperatures and precipitation were the main factors affecting the delay and advancement of EOS,respectively,with an area share of 15.80%and 21.60%.This study provides valuable insight into the relationship between vegetation phenology and climate change,which can be of great practical value for the ecological protection of the Qinghai-Tibetan Plateau as well as for the development of GSD ecological animal husbandry in the QM alpine pastoral area. 展开更多
关键词 Vegetation phenology Time series decomposition Path Analysis Climate change
下载PDF
Reactive Transport Process of Earthquake-induced Hydrochemical Changes in Guanding Thermal Spring,Western Sichuan,China
18
作者 NA Jin JIANG Xue +1 位作者 SHI Zheming CHEN Yanmei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期241-249,共9页
Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulati... Earthquake-related hydrochemical changes in thermal springs have been widely observed;however,quantitative modeling of the reactive transport process is absent.In the present study,we apply reactive transport simulation to capture the hydrochemical responses in a thermal spring following the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes.We first constrain deep reservoir geothermal fluid compositions and temperature by multicomponent geothermometry,and then a reactive geochemical transport model is constructed to reproduce the hydrochemical evolution process.The results show that the recharge from the shallow aquifer increases gradually until it reaches a peak because of the permeability enhancement caused by the Lushan earthquake,which may be the mechanism to explain the earthquake-related hydrochemical responses.In contrast to the postseismic effect of the Wenchuan earthquake,the chemical evolution can be considered as hydrochemical anomalies related to the Lushan earthquake.This study proves that the efficient simulation of reactive transport processes is useful for investigating earthquake-related signals in hydrochemical time series. 展开更多
关键词 EARTHQUAKE hydrochemical changes reactive geochemical transport model Kangding area
下载PDF
Activity Data and Emission Factor for Forestry and Other Land Use Change Subsector to Enhance Carbon Market Policy and Action in Malawi
19
作者 Edward Missanjo Henry Kadzuwa 《Journal of Environmental Protection》 2024年第4期401-414,共14页
Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo... Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi. 展开更多
关键词 Activity Data Emission Factor Climate change Forestland Carbon Market
下载PDF
Scattered Co-anchored MoS_(2)synergistically boosting photothermal capture and storage of phase change materials
20
作者 Yang Li Panpan Liu +3 位作者 Yan Gao Yuhao Feng Peicheng Li Xiao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期208-215,I0005,共9页
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ... Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization. 展开更多
关键词 Phase change materials Photothermal conversion thermal energy storage
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部