Nonylphenol(NP) and bisphenol A(BPA) are endocrine disruptors causing harmful effects including feminization and carcinogenesis to various organisms,and consequently,their contamination in natural environment has ...Nonylphenol(NP) and bisphenol A(BPA) are endocrine disruptors causing harmful effects including feminization and carcinogenesis to various organisms,and consequently,their contamination in natural environment has received wide concerns.This study reports the distribution characteristics of NP and BPA in surface sediments and their deposition history based on a dated sediment core in the Changjiang River(Yangtze River) Estuary and its adjacent East China Sea.The contents of NP and BPA in surface sediments ranged from 1.56-35.8 and 0.72-13.2 ng/g(dry mass),respectively,with high values recorded in the two mud zones,the Changjiang River Estuarine Mud Zone and the Zhejiang Coastal Mud Zone.High values in the Zhejiang Coastal Mud Zone suggest the possibility of long distance transport of both contaminants through the Changjiang riverine plume.The contents were not correlated with the distance from the pollution source,indicating other factors including particle deposition rate and sediment grain size obviously affecting the distribution pattern.NP was also detected in a sediment core at layers deposited from the year of 1971 to 2001 with contents of up to 20.9 ng/g(dry mass).The deposition fluxes of NP varied from 0.68 to 17.9 ng/(cm^2 · a) with peaks and valleys reflecting the traces of economic development history in China during the previous three decades.BPA was detected at sediment layers deposited from 1973 to 2001 with contents of up to 3.66 ng/g.The fluxes of BPA varied from 0.62 to 3.13 ng/(cm^2 · a) showing a similar pattern as NP.The contents of NP and BPA also indicated potential risks on benthic organisms in the study area.展开更多
The Changjiang River (Yangtze) is one of the fastest growth areas of container transportation in China. Rail, road and water transportation have competed against each other for container transportation in the Chang-ji...The Changjiang River (Yangtze) is one of the fastest growth areas of container transportation in China. Rail, road and water transportation have competed against each other for container transportation in the Chang-jiang River main line and its delta area. It is of significance to assess these different transportation modes scientifically in order to organize container transportation efficiently in this area and make decision for integral plan and construction of transportation system in this area. This paper outlines application of fuzzy comprehensive evaluation to appraise different modes of typical direction of containers. Twelve assessment indexes were decided. Membership functions were formulated. Evaluation results indicated that road transportation was optimal mode in the Changjiang River delta area, however water transportation was the primary way in the Changjiang River main line.展开更多
This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-re...This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-resolution grain-size variation, sensitive population, geochemical indexes and magnetic susceptibility. The core covers a time span of 120 years by 21~pb dating and was sampled at 1-2 cm intervals. Grain size, geochemical elements, and physical parameters were analyzed. The results indicate that the sediment of the core is mainly composed of silt and clay, as well as groups of interbedded silt, clay silt, and clay. Vertically, the grain size pattern was controlled by seasonal variations in water discharge and by the sediment input in winter from the abandoned Huanghe River delta. River flooding caused extreme values in all our measured parameters. We identified more than 20 flood events that occurred since 1887 using the physical parameter analysis method. The environmentally sensitive component of sediment grain size (14.32-96.39 gm) contribution〉30%, Zr/Rb ratio〉l.5, and magnetic susceptibility〉16 were selected as the criteria for flood identification generally. We also found that floods that had taken place in the upstream, midstream, or downstream parts of the river were clearly identified by these indexes while the large-scale floods that covered the whole drainage area did not leave clear indications in the sediment record. This study for identification of flood events is of great significance for understanding hyperpycnal current sedimentation as well as for forecasting of floods.展开更多
Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The...Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.展开更多
The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field d...The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.展开更多
Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangt...Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.展开更多
Spatial-temporal distribution of marine fishes is strongly influenced by environmental factors.To obtain a more continuous distribution of these variables usually measured by stationary sampling designs,spatial interp...Spatial-temporal distribution of marine fishes is strongly influenced by environmental factors.To obtain a more continuous distribution of these variables usually measured by stationary sampling designs,spatial interpolation methods(SIMs)is usually used.However,different SIMs may obtain varied estimation values with significant differences,thus affecting the prediction of fish spatial distribution.In this study,different SIMs were used to obtain continuous environmental variables(water depth,water temperature,salinity,dissolved oxygen(DO),p H,chlorophyll a and chemical oxygen demand(COD))in the Changjiang River Estuary(CRE),including inverse distance weighted(IDW)interpolation,ordinary Kriging(OK)(semivariogram model:exponential(OKE),Gaussian(OKG)and spherical(OKS))and radial basis function(RBF)(regularized spline function(RS)and tension spline function(TS)).The accuracy and effect of SIMs were cross-validated,and two-stage generalized additive model(GAM)was used to predict the distribution of Coilia nasus from 2012 to 2014 in CRE.DO and COD were removed before model prediction due to their autocorrelation coefficient based on variance inflation factors analysis.Results showed that the estimated values of environmental variables obtained by the different SIMs differed(i.e.,mean values,range etc.).Cross-validation revealed that the most suitable SIMs of water depth and chlorophyll a was IDW,water temperature and salinity was RS,and p H was OKG.Further,different interpolation results affected the predicted spatial distribution of Coilia nasus in the CRE.The mean values of the predicted abundance were similar,but the differences between and among the maximum value were large.Studies showed that different SIMs can affect estimated values of the environmental variables in the CRE(especially salinity).These variations further suggest that the most applicable SIMs to each variable will also differ.Thus,it is necessary to take these potential impacts into consideration when studying the relationship between the spatial distribution of fishes and environmental changes in the CRE.展开更多
Some main ideas about the turning of the Changjiang River diluted water (CDW) and their deficiencies are reviewed in this paper. According to a large number of observation data it is pointed out that the turning pheno...Some main ideas about the turning of the Changjiang River diluted water (CDW) and their deficiencies are reviewed in this paper. According to a large number of observation data it is pointed out that the turning phenomena of the CDW are related not only to the discharge of the Changjiang River but also to the sea surface slope and wind stress curl in the southeast coast of China. Exsistence of the sea surface slope reflects essentially the effect of the Taiwan Warm Currc (TWC) on the turning of the CDW.展开更多
The Changjiang River Estuary(CRE)in the East China Sea suffers from seasonal hypoxia in summer.The vertical distributions and seasonal changes of microbial communities in the CRE were well documented.However,little is...The Changjiang River Estuary(CRE)in the East China Sea suffers from seasonal hypoxia in summer.The vertical distributions and seasonal changes of microbial communities in the CRE were well documented.However,little is known about the diurnal changes of bacterial communities in the hypoxic zone of the CRE.Here,16 S rRNA gene analysis was used to explore the changes of bacterial communities in the oxic surface and hypoxic middle seawater layers during 24 h in the CRE.Significant differences between the hypoxic and oxic layers were observed:the phyla Cyanobacteria,Bacteroidetes and Acidimicrobiia were enriched in the oxic layer,whereas the phylum SAR406 and the class Deltaproteobacteria were more abundant in the hypoxic layer.In addition,some subtle diurnal variations of the bacterial relative abundance were found in both two layers.The relative abundance of Synechococcus increased at night,and this change was more obvious in the hypoxic layer.The similar trend was also found in some phototrophic and several heterotrophic bacteria,such as Rhodobacteraceae,OM60 and Flavobacteriaceae.Their relative abundances peaked at 16:00 in the oxic layer,while the relative abundances peaked at around 7:00 and decreased until 13:00 in the hypoxic layer.Together,the results of the present study suggest that some photosynthetic bacteria and several heterotrophic bacteria have similar diurnal variations implying the light and physicochemical heterogeneity in the course of a day are important for bacterial diurnal changes in the CRE.展开更多
On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjian...On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjiang River (Yangtse River) region are studied. The results are concluded as follows;the surface heat fluxes of the Kuroshio key-area have certain influence on meiyu rainfall in the Changjiang River region during June and July. The correctness rates for the five stations in the Changjing River region (i. e. Wuhan, Jiujiang, Anqing,Nanjing and Shanghai)are in the range of 9/20-13/20. The surface heat fluxes influence mainly on the homogeneous rainfall pattern,the correctness rates come to 7/10-8/10 for the lower valley of the Changjiang River. The estimation expression of the meiyu rainfall for Shanghai consisting of the surface heat flux and the sea surface temperature anomaly of the Kuroshio key area agrees well with the actual meiyu rainfall condition.展开更多
The North Branch, separated by the Chongming Island, was once the main channel in the estuary of the Changjiang River. Reclamation and a decrease in runoffto the North Branch had led to the narrowing and shallowing of...The North Branch, separated by the Chongming Island, was once the main channel in the estuary of the Changjiang River. Reclamation and a decrease in runoffto the North Branch had led to the narrowing and shallowing of the channel. The Yuantuojiao Point is located at the intersecting point connecting the North Branch of the Changjiang River and the Jiangsu coastline. Erosion cliffs are developed between the typical silty-muddy tidal flat and the salt marsh occupied by Spartina alterniflorea, and this has changed rapidly over the past few years. The sediment grain size analysis results of the surficial and two core samples indi- cate that the Yuantuoiiao Point tidal fiat experienced continuous accretional processes. Based upon 137Cs analysis results of the YT and YY Cores sampled from the tidal flat at the Yuantuojiao Point, the average sed- imentation rate of the YT Core was 2.30 cm/a from 1963 to 2007, and 2.38 cm/a from 1954 to 2007 for the YY Core. The sedimentation rates of both core locations have declined since the 1960s corresponding to the seaward reclamation at the Yuantuojiao Point. The average sedimentation rates at the Yuantnojiao Point were similar to that of the silty-muddy tidal flat at the northern ]iangsu coast, but lower than that of the south of the Changjiang River Estuary. According to field morphological investigations from 2006 to 2008 on the salt marsh at the Yuantuojiao Point, cliffs retreated markedly by storm surges and disappeared gradu- ally because of the rapid sedimentation on the silty-muddy tidal flat. The maximum annual retreat reached 10 m. The recent sedimentation and morphological changes of the Yuantuojiao Point tidal flat not only displayed the retreat of the salt marsh and the disappearance of cliffs, but also was accompanied by rapid sedimentation of the silty-muddy tidal flat and the salt marsh, indicating the responses to the tidal currents, storm surges, Spartina alterniflorea trapping sediments and large-scale reclamation. The sediment grain size and their trends, southward coastal flow, and sandspits of the longshore bars suggest that the main sediment source at the Yuantuoijao Point, estuary of the North Branch was possibly from the Changjiang River before 1958, since then, it has been from the south of the submarine radial sand ridges of the southern Huanghai Sea (Yellow Sea).展开更多
Painting since the 1950s. Weng De has 0btained numerous achievements in this field.Majestic andwiht the rich flavor of the times.Weng’s landscape paintings show a heroic.emotive spirit. In 1976.Weng De Went with the ...Painting since the 1950s. Weng De has 0btained numerous achievements in this field.Majestic andwiht the rich flavor of the times.Weng’s landscape paintings show a heroic.emotive spirit. In 1976.Weng De Went with the observation and exploration team to the fountainhead of theChangjiang River to sketch and paint from nature.On this trip.he experienced various tests on展开更多
A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. B...A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. Based on the observation data, biogeochemistry of chemical oxygen demand (COD) was examined. Spatial distribution pattern of COD shows that it decreased downstream. The COD concentration varied generally within a narrow range of 1.24–1.60 mg/L in the zone around the river mouth, beyond which it decreased rapidly to 0.20 mg/L. In the mixed water zone, the fluctuation in COD was smaller at 2 m above the bottom layer than at the surface layer in 48 h. In the seawater zone, the 48-h fluctuation at the surface was the largest, followed by that of 5 m below the surface and 2 m above the bottom layers in a range of from 2.50 to 0.55 mg/L. Freshwater discharge was the dominant source of COD in the estuary. The average COD beyond the river mouth was 2.7 mg/L, which accorded with the Chinese seawater quality Grade I. Relationships between dissolved oxygen and biogeochemical parameters such as suspended particulate matter, dissolved organic matter and chlorophyll-a were also discussed.展开更多
The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (...The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.展开更多
Data taken in two large scale ocean observations in China in summer 1959 and 1982 were used to analyze the residual current off the Changjiang (Yangtze) River mouth. The currents at surface off the mouth in July 1959 ...Data taken in two large scale ocean observations in China in summer 1959 and 1982 were used to analyze the residual current off the Changjiang (Yangtze) River mouth. The currents at surface off the mouth in July 1959 and 1982 flow northeastward and eastward due to the river discharge, the current speed was larger in1982 than in 1959. All the bottom currents flow landward due to baroclinic effect. The surface current was controlled by the river runoff and the Taiwan Warm Current (TWC). A return current at surface off the mouth was observed in September 1959. In general, the bottom currents were controlled by the TWC in most study area in addition to the runoff near the mouth. Although driven by 3-D model with the monthly averaged forces (river discharge, wind stress, baroclinic effect, open boundary water volume flux and tidal mixing) in August, the simulated circulations were basically consistent with the observed ones with episodic time manner.展开更多
The bacterioplankton production and bacterioplankton abundance were surveyed in dilution zone of the Changjiang Estuary and a mesocosm experimental device for enriched phosphate experiment and oil contaminated experim...The bacterioplankton production and bacterioplankton abundance were surveyed in dilution zone of the Changjiang Estuary and a mesocosm experimental device for enriched phosphate experiment and oil contaminated experiment was placed in the waters nearby Luhua Island during October 1997 and May 1998. The results showed that the average bacterioplankton production in spring was higher than that in autumn, the production at the surface water was higher than that at the bottom in the surveyed area; the higher values appeared in the middle of the area. The results from mesocosm experiment with adding phosphate and oil contaminated showed that the bacterioplankton production increased rising trend day by day during the experiment period.展开更多
Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang Ri...Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang River.Using Landsat TM image of 2000,this paper conducted a series of image processing,including principal component analysis,multi-spectral composition,gray value statistics,and spectral analysis of ground objects.Then it got a new interpretation map of different kinds of fluvial landforms of the Changjiang River in the Anhui section.Based on the interpretation mentioned above,the paper analyzes the distribution and characteristics of such typical landforms as terraces,floodplains and battures,and their functions on the changes of river channel.The results show a consistence with the earlier conclusion that the Anhui section of the Changjiang River tends to deflect gradually toward south,which provides more implications for further study on the geomorphologic evolution of the river channel.展开更多
In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East C...In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area.展开更多
The hypoxic phenomena of seawater have been found in the Changjiang esturay and its adjacent area for several decades. To study organic matter degradation in seasonal hypoxic seawater, series of stimulated incubation ...The hypoxic phenomena of seawater have been found in the Changjiang esturay and its adjacent area for several decades. To study organic matter degradation in seasonal hypoxic seawater, series of stimulated incubation experiments with S keletonema costatum in seawater under different oxygen saturations were conducted. By tracking variations of lipids originated from the alga, time-dependent concentrations of neutral lipids(hexadecanol, otctadecanol, cholesterol, brassicasterol and phytol) and fatty acids(12:0, 14:0, 16:0, 16:1, 18:0, 18:1(9), 20:5 and 22:6) were obtained during three month of incubation. The results indicate that residence time, oxygen saturation, bacterial community and the structure of lipids were key factors controlling preservation and degradation of lipids in seawater. The degradation rate constants calculated from multi-G model showed that under same oxygen saturation, algal fatty acid degraded faster than neutral lipids, and unsaturated fatty acids degraded faster than saturated fatty acids. Our new discovery showed that degradation rate constant had linear positive correlation with oxygen saturation of seawater, indicating the critical role of oxygen on degradation of algal lipids in hypoxic seawater. The results of this study will be helpful to understand organic carbon cycling in seawater and marine environment more deeply. Future field experiments and investigation should be conducted tracking control factors, especially the role of oxygen saturation on organic matter degradation in natural environment.展开更多
基金The National Natural Science Foundation of China under contract No. 40676067the National Basic Research Program of China (973) under contract No. 2005CB422304
文摘Nonylphenol(NP) and bisphenol A(BPA) are endocrine disruptors causing harmful effects including feminization and carcinogenesis to various organisms,and consequently,their contamination in natural environment has received wide concerns.This study reports the distribution characteristics of NP and BPA in surface sediments and their deposition history based on a dated sediment core in the Changjiang River(Yangtze River) Estuary and its adjacent East China Sea.The contents of NP and BPA in surface sediments ranged from 1.56-35.8 and 0.72-13.2 ng/g(dry mass),respectively,with high values recorded in the two mud zones,the Changjiang River Estuarine Mud Zone and the Zhejiang Coastal Mud Zone.High values in the Zhejiang Coastal Mud Zone suggest the possibility of long distance transport of both contaminants through the Changjiang riverine plume.The contents were not correlated with the distance from the pollution source,indicating other factors including particle deposition rate and sediment grain size obviously affecting the distribution pattern.NP was also detected in a sediment core at layers deposited from the year of 1971 to 2001 with contents of up to 20.9 ng/g(dry mass).The deposition fluxes of NP varied from 0.68 to 17.9 ng/(cm^2 · a) with peaks and valleys reflecting the traces of economic development history in China during the previous three decades.BPA was detected at sediment layers deposited from 1973 to 2001 with contents of up to 3.66 ng/g.The fluxes of BPA varied from 0.62 to 3.13 ng/(cm^2 · a) showing a similar pattern as NP.The contents of NP and BPA also indicated potential risks on benthic organisms in the study area.
文摘The Changjiang River (Yangtze) is one of the fastest growth areas of container transportation in China. Rail, road and water transportation have competed against each other for container transportation in the Chang-jiang River main line and its delta area. It is of significance to assess these different transportation modes scientifically in order to organize container transportation efficiently in this area and make decision for integral plan and construction of transportation system in this area. This paper outlines application of fuzzy comprehensive evaluation to appraise different modes of typical direction of containers. Twelve assessment indexes were decided. Membership functions were formulated. Evaluation results indicated that road transportation was optimal mode in the Changjiang River delta area, however water transportation was the primary way in the Changjiang River main line.
基金Supported by the National Natural Science Foundation of China(Nos.41206073,41376079,41206051,41206052)the China Geological Survey(Nos.1212010611401,200900501)
文摘This paper presents a paleoflood study to determine the flood frequency of the Changjiang River, based on core cj0702, taken from the Changjiang River subaqueous delta. We identified flood deposits by means of high-resolution grain-size variation, sensitive population, geochemical indexes and magnetic susceptibility. The core covers a time span of 120 years by 21~pb dating and was sampled at 1-2 cm intervals. Grain size, geochemical elements, and physical parameters were analyzed. The results indicate that the sediment of the core is mainly composed of silt and clay, as well as groups of interbedded silt, clay silt, and clay. Vertically, the grain size pattern was controlled by seasonal variations in water discharge and by the sediment input in winter from the abandoned Huanghe River delta. River flooding caused extreme values in all our measured parameters. We identified more than 20 flood events that occurred since 1887 using the physical parameter analysis method. The environmentally sensitive component of sediment grain size (14.32-96.39 gm) contribution〉30%, Zr/Rb ratio〉l.5, and magnetic susceptibility〉16 were selected as the criteria for flood identification generally. We also found that floods that had taken place in the upstream, midstream, or downstream parts of the river were clearly identified by these indexes while the large-scale floods that covered the whole drainage area did not leave clear indications in the sediment record. This study for identification of flood events is of great significance for understanding hyperpycnal current sedimentation as well as for forecasting of floods.
基金National Natural Science Foundation of China No. 49971071 Shanghai Priority Academic Discipline
文摘Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.
基金the National Basic Research Program of China (Nos. 2001 CB409703 and 2010CB428701)the National Natural Science Foundation of China (Nos. 41140037 and 41276 069)
文摘The characteristics of seasonal variation in phytoplankton biomass and dominant species in the Changjiang River Estuary and adjacent seas were discussed based on field investigation data from 1959 to 2009. The field data from 1981 to 2004 showed that the Chlorophyll-a concentration in surface seawater was between 0.4 and 8.5 ktg dm-3. The seasonal changes generally presented a bimodal trend, with the biomass peaks occurring in May and August, and Chlorophyll-a concentration was the lowest in winter. Seasonal biomass changes were mainly controlled by temperature and nutrient levels. From the end of autumn to the next early spring, phytoplankton biomass was mainly influenced by temperature, and in other seasons, nutrient level (including the nutrient supply from the terrestrial runoffs) was the major influence factor. Field investigation data from 1959 to 2009 demonstrated that dia- toms were the main phytoplankton in this area, and Skeletonerna costatum, Pseudo-nitzschia pungens, Coscinodiscus oculus-iridis, Thalassinoema nitzschioides, Paralia sulcata, Chaetoceros lorenzianus, Chaetoceros curvisetus, and Prorocentrum donghaiense Lu were common dominant species. The seasonal variations in major dominant phytoplankton species presented the following trends: 1) Skeletonema (mainly S. costatum) was dominant throughout the year; and 2) seasonal succession trends were Coscinodiscus (spring) →Chaetoceros (summer and autumn) → Coscinodiscus (winter). The annual dominance of S. costatum was attributed to its environmental eurytopicity and long standing time in surface waters. The seasonal succession of Coscinodiscus and Chaetoceros was associated with the seasonal variation in water stability and nutrient level in this area. On the other hand, long-term field data also indicated obvious interannual variation of phytoplankton biomass and community structure in the Changjiang River Estuary and adjacent seas: average annual phytoplankton biomass and dinoflagellate proportion both presented increased trends during the 1950s - 2000s.
基金Project Supported by the National Science Foundation of China and the Chinese Academy of Sci-ences
文摘Sea level rise could increase the salinity of an estuary by altering the balance between fresh water and salt water.The implications of sea level rise for increasing salinity have been examined in the Changjiang(Yangtze)River estuary.By correlative analysis of chlorinity,discharge and tidal level and calculation of two-dimensional chlorinity,distribution of the Changjiang River estuary,the changes of the intensity and lasting hours of salt water intrusion at Wusong Station and the changes of chlorinity distribution in the South Branch of the Changjiang River estuary have been estimated when future sea level rises 50-100 cm.The intensity of salt water intrusion in the future will be far more serious than current trend.
基金The Shanghai Municipal Science and Technology Commission Local Capacity Construction Project under contract No.18050502000the Monitoring and Evaluation of National Sea Ranch Demonstration Area Project in Changjiang River Estuary under contract No.171015the National Natural Science Foundation of China under contract No.41906074。
文摘Spatial-temporal distribution of marine fishes is strongly influenced by environmental factors.To obtain a more continuous distribution of these variables usually measured by stationary sampling designs,spatial interpolation methods(SIMs)is usually used.However,different SIMs may obtain varied estimation values with significant differences,thus affecting the prediction of fish spatial distribution.In this study,different SIMs were used to obtain continuous environmental variables(water depth,water temperature,salinity,dissolved oxygen(DO),p H,chlorophyll a and chemical oxygen demand(COD))in the Changjiang River Estuary(CRE),including inverse distance weighted(IDW)interpolation,ordinary Kriging(OK)(semivariogram model:exponential(OKE),Gaussian(OKG)and spherical(OKS))and radial basis function(RBF)(regularized spline function(RS)and tension spline function(TS)).The accuracy and effect of SIMs were cross-validated,and two-stage generalized additive model(GAM)was used to predict the distribution of Coilia nasus from 2012 to 2014 in CRE.DO and COD were removed before model prediction due to their autocorrelation coefficient based on variance inflation factors analysis.Results showed that the estimated values of environmental variables obtained by the different SIMs differed(i.e.,mean values,range etc.).Cross-validation revealed that the most suitable SIMs of water depth and chlorophyll a was IDW,water temperature and salinity was RS,and p H was OKG.Further,different interpolation results affected the predicted spatial distribution of Coilia nasus in the CRE.The mean values of the predicted abundance were similar,but the differences between and among the maximum value were large.Studies showed that different SIMs can affect estimated values of the environmental variables in the CRE(especially salinity).These variations further suggest that the most applicable SIMs to each variable will also differ.Thus,it is necessary to take these potential impacts into consideration when studying the relationship between the spatial distribution of fishes and environmental changes in the CRE.
文摘Some main ideas about the turning of the Changjiang River diluted water (CDW) and their deficiencies are reviewed in this paper. According to a large number of observation data it is pointed out that the turning phenomena of the CDW are related not only to the discharge of the Changjiang River but also to the sea surface slope and wind stress curl in the southeast coast of China. Exsistence of the sea surface slope reflects essentially the effect of the Taiwan Warm Currc (TWC) on the turning of the CDW.
基金The National Key R&D Program of China under contract No.2019YFD0901305the Science and Technology Program of Zhoushan under contract No.2019C21011+4 种基金the National Natural Science Foundation of China under contract Nos31270160 and J1310037the Natural Science Foundation of Zhejiang ProvinceChina under contract No.LY12C03003the Zhejiang Public Welfare Technology Application Research Project under contract No.2016C33084the Research Project of Ecological Environment Protection and Restoration of Yangtze River in Zhoushan under contract No.SZGXZS2020068。
文摘The Changjiang River Estuary(CRE)in the East China Sea suffers from seasonal hypoxia in summer.The vertical distributions and seasonal changes of microbial communities in the CRE were well documented.However,little is known about the diurnal changes of bacterial communities in the hypoxic zone of the CRE.Here,16 S rRNA gene analysis was used to explore the changes of bacterial communities in the oxic surface and hypoxic middle seawater layers during 24 h in the CRE.Significant differences between the hypoxic and oxic layers were observed:the phyla Cyanobacteria,Bacteroidetes and Acidimicrobiia were enriched in the oxic layer,whereas the phylum SAR406 and the class Deltaproteobacteria were more abundant in the hypoxic layer.In addition,some subtle diurnal variations of the bacterial relative abundance were found in both two layers.The relative abundance of Synechococcus increased at night,and this change was more obvious in the hypoxic layer.The similar trend was also found in some phototrophic and several heterotrophic bacteria,such as Rhodobacteraceae,OM60 and Flavobacteriaceae.Their relative abundances peaked at 16:00 in the oxic layer,while the relative abundances peaked at around 7:00 and decreased until 13:00 in the hypoxic layer.Together,the results of the present study suggest that some photosynthetic bacteria and several heterotrophic bacteria have similar diurnal variations implying the light and physicochemical heterogeneity in the course of a day are important for bacterial diurnal changes in the CRE.
文摘On the basis, of the surface heat fluxes of the Kuroshio key-area (26°-30°N, 125°-30°E)in March andApril, the climatologicai influence of the Kuroshio heat fluxes on meiyu rainfall in the Changjiang River (Yangtse River) region are studied. The results are concluded as follows;the surface heat fluxes of the Kuroshio key-area have certain influence on meiyu rainfall in the Changjiang River region during June and July. The correctness rates for the five stations in the Changjing River region (i. e. Wuhan, Jiujiang, Anqing,Nanjing and Shanghai)are in the range of 9/20-13/20. The surface heat fluxes influence mainly on the homogeneous rainfall pattern,the correctness rates come to 7/10-8/10 for the lower valley of the Changjiang River. The estimation expression of the meiyu rainfall for Shanghai consisting of the surface heat flux and the sea surface temperature anomaly of the Kuroshio key area agrees well with the actual meiyu rainfall condition.
基金The National Natural Science Foundation of China under contract Nos 41071006 and 40676052the Jiangsu Natural Science Foundation under contract No. BK2010050the Research Fund for the Doctoral Program of Higher Education of China under contract No.20100091110011
文摘The North Branch, separated by the Chongming Island, was once the main channel in the estuary of the Changjiang River. Reclamation and a decrease in runoffto the North Branch had led to the narrowing and shallowing of the channel. The Yuantuojiao Point is located at the intersecting point connecting the North Branch of the Changjiang River and the Jiangsu coastline. Erosion cliffs are developed between the typical silty-muddy tidal flat and the salt marsh occupied by Spartina alterniflorea, and this has changed rapidly over the past few years. The sediment grain size analysis results of the surficial and two core samples indi- cate that the Yuantuoiiao Point tidal fiat experienced continuous accretional processes. Based upon 137Cs analysis results of the YT and YY Cores sampled from the tidal flat at the Yuantuojiao Point, the average sed- imentation rate of the YT Core was 2.30 cm/a from 1963 to 2007, and 2.38 cm/a from 1954 to 2007 for the YY Core. The sedimentation rates of both core locations have declined since the 1960s corresponding to the seaward reclamation at the Yuantuojiao Point. The average sedimentation rates at the Yuantnojiao Point were similar to that of the silty-muddy tidal flat at the northern ]iangsu coast, but lower than that of the south of the Changjiang River Estuary. According to field morphological investigations from 2006 to 2008 on the salt marsh at the Yuantuojiao Point, cliffs retreated markedly by storm surges and disappeared gradu- ally because of the rapid sedimentation on the silty-muddy tidal flat. The maximum annual retreat reached 10 m. The recent sedimentation and morphological changes of the Yuantuojiao Point tidal flat not only displayed the retreat of the salt marsh and the disappearance of cliffs, but also was accompanied by rapid sedimentation of the silty-muddy tidal flat and the salt marsh, indicating the responses to the tidal currents, storm surges, Spartina alterniflorea trapping sediments and large-scale reclamation. The sediment grain size and their trends, southward coastal flow, and sandspits of the longshore bars suggest that the main sediment source at the Yuantuoijao Point, estuary of the North Branch was possibly from the Changjiang River before 1958, since then, it has been from the south of the submarine radial sand ridges of the southern Huanghai Sea (Yellow Sea).
文摘Painting since the 1950s. Weng De has 0btained numerous achievements in this field.Majestic andwiht the rich flavor of the times.Weng’s landscape paintings show a heroic.emotive spirit. In 1976.Weng De Went with the observation and exploration team to the fountainhead of theChangjiang River to sketch and paint from nature.On this trip.he experienced various tests on
基金Supported by National Basic Research Program of China 973 plan (2007CB407305)the Qingdao Special Program for Leading Scientists (05-2-JC-90)the "100 Talents Project" of the Chinese Academy of Sciences
文摘A field observation was carried out in the Changjiang (Yangtze) River Estuary from May 19 to 26, 2003. A total of 29 stations, including 2 anchored stations, were occupied through almost the whole salinity gradient. Based on the observation data, biogeochemistry of chemical oxygen demand (COD) was examined. Spatial distribution pattern of COD shows that it decreased downstream. The COD concentration varied generally within a narrow range of 1.24–1.60 mg/L in the zone around the river mouth, beyond which it decreased rapidly to 0.20 mg/L. In the mixed water zone, the fluctuation in COD was smaller at 2 m above the bottom layer than at the surface layer in 48 h. In the seawater zone, the 48-h fluctuation at the surface was the largest, followed by that of 5 m below the surface and 2 m above the bottom layers in a range of from 2.50 to 0.55 mg/L. Freshwater discharge was the dominant source of COD in the estuary. The average COD beyond the river mouth was 2.7 mg/L, which accorded with the Chinese seawater quality Grade I. Relationships between dissolved oxygen and biogeochemical parameters such as suspended particulate matter, dissolved organic matter and chlorophyll-a were also discussed.
文摘The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.
文摘Data taken in two large scale ocean observations in China in summer 1959 and 1982 were used to analyze the residual current off the Changjiang (Yangtze) River mouth. The currents at surface off the mouth in July 1959 and 1982 flow northeastward and eastward due to the river discharge, the current speed was larger in1982 than in 1959. All the bottom currents flow landward due to baroclinic effect. The surface current was controlled by the river runoff and the Taiwan Warm Current (TWC). A return current at surface off the mouth was observed in September 1959. In general, the bottom currents were controlled by the TWC in most study area in addition to the runoff near the mouth. Although driven by 3-D model with the monthly averaged forces (river discharge, wind stress, baroclinic effect, open boundary water volume flux and tidal mixing) in August, the simulated circulations were basically consistent with the observed ones with episodic time manner.
文摘The bacterioplankton production and bacterioplankton abundance were surveyed in dilution zone of the Changjiang Estuary and a mesocosm experimental device for enriched phosphate experiment and oil contaminated experiment was placed in the waters nearby Luhua Island during October 1997 and May 1998. The results showed that the average bacterioplankton production in spring was higher than that in autumn, the production at the surface water was higher than that at the bottom in the surveyed area; the higher values appeared in the middle of the area. The results from mesocosm experiment with adding phosphate and oil contaminated showed that the bacterioplankton production increased rising trend day by day during the experiment period.
基金Under the auspices of the Geological Survey Funds of Chinese Geological Survey(No.199916000111)
文摘Fluvial landforms in the Anhui section of the Changjiang(Yangtze)River are often considered as the main factors for frequent floods.It is these special landforms that influence the channel changes of the Changjiang River.Using Landsat TM image of 2000,this paper conducted a series of image processing,including principal component analysis,multi-spectral composition,gray value statistics,and spectral analysis of ground objects.Then it got a new interpretation map of different kinds of fluvial landforms of the Changjiang River in the Anhui section.Based on the interpretation mentioned above,the paper analyzes the distribution and characteristics of such typical landforms as terraces,floodplains and battures,and their functions on the changes of river channel.The results show a consistence with the earlier conclusion that the Anhui section of the Changjiang River tends to deflect gradually toward south,which provides more implications for further study on the geomorphologic evolution of the river channel.
基金Supported by National Basic Research Program of China (973 Program, No. 2005CB422303 and 2007CB411804)the Key Project of the International Science and Technology Cooperation Program of China (No. 2006DFB21250)+1 种基金the "111 Project" of the Ministry of Education (No. B07036)the Program for New Century Excellent Talents in University, China (No. NECT-07-0781)
文摘In this paper, we use the conductivity-temperature-depth (CTD) observation data and a three-dimensional ocean model in a seasonally-varying forcing field to study the barrier layer (BL) in the PN section in the East China Sea (ECS). The BL can be found along the PN section with obviously seasonal variability. In winter, spring and autumn, the BL occurs around the slope where the cold shelf water meets with the warm Kuroshio water. In summer, the BL can also be found in the shelf area near salinity front of the Changjiang (Yangtze) River Dilution Water (YRDW). Seasonal variations of BL in the PN section are caused by local hydrological characteristics and seasonal variations of atmospheric forcing. Strong vertical convection caused by sea surface cooling thickens the BL in winter and spring in the slope area. Due to the large discharge of Changjiang River in summer, the BL occurs extensively in the shelf region where the fresh YRDW and the salty bottom water meet and form a strong halocline above the seasonal thermocline. The formation mechanism of BL in the PN section can be explained by the vertical shear of different water masses, which is called the advection mechanism. The interannual variation of BL in summer is greatly affected by the YRDW. In the larger YRDW year (such as 1998), a shallow but much thicker BL existed on the shelf area.
基金Supported by the National Natural Science Foundation of China for Creative Groups(No.41521064)the National Natural Science Foundation of China(No.41676067)+2 种基金the Fundamental Funds for Central Universities(No.201762030)the National Key Research and Development Program of China(No.2016YFA0601302)the Natural Science Foundation of Shandong Province(No.ZR2010DM001)
文摘The hypoxic phenomena of seawater have been found in the Changjiang esturay and its adjacent area for several decades. To study organic matter degradation in seasonal hypoxic seawater, series of stimulated incubation experiments with S keletonema costatum in seawater under different oxygen saturations were conducted. By tracking variations of lipids originated from the alga, time-dependent concentrations of neutral lipids(hexadecanol, otctadecanol, cholesterol, brassicasterol and phytol) and fatty acids(12:0, 14:0, 16:0, 16:1, 18:0, 18:1(9), 20:5 and 22:6) were obtained during three month of incubation. The results indicate that residence time, oxygen saturation, bacterial community and the structure of lipids were key factors controlling preservation and degradation of lipids in seawater. The degradation rate constants calculated from multi-G model showed that under same oxygen saturation, algal fatty acid degraded faster than neutral lipids, and unsaturated fatty acids degraded faster than saturated fatty acids. Our new discovery showed that degradation rate constant had linear positive correlation with oxygen saturation of seawater, indicating the critical role of oxygen on degradation of algal lipids in hypoxic seawater. The results of this study will be helpful to understand organic carbon cycling in seawater and marine environment more deeply. Future field experiments and investigation should be conducted tracking control factors, especially the role of oxygen saturation on organic matter degradation in natural environment.