期刊文献+
共找到811篇文章
< 1 2 41 >
每页显示 20 50 100
Neural Network Robust Control Based on Computed Torque for Lower Limb Exoskeleton
1
作者 Yibo Han Hongtao Ma +6 位作者 Yapeng Wang Di Shi Yanggang Feng Xianzhong Li Yanjun Shi Xilun Ding Wuxiang Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期83-99,共17页
The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the ... The lower limb exoskeletons are used to assist wearers in various scenarios such as medical and industrial settings.Complex modeling errors of the exoskeleton in different application scenarios pose challenges to the robustness and stability of its control algorithm.The Radial Basis Function(RBF)neural network is used widely to compensate for modeling errors.In order to solve the problem that the current RBF neural network controllers cannot guarantee the asymptotic stability,a neural network robust control algorithm based on computed torque method is proposed in this paper,focusing on trajectory tracking.It innovatively incorporates the robust adaptive term while introducing the RBF neural network term,improving the compensation ability for modeling errors.The stability of the algorithm is proved by Lyapunov method,and the effectiveness of the robust adaptive term is verified by the simulation.Experiments wearing the exoskeleton under different walking speeds and scenarios were carried out,and the results show that the absolute value of tracking errors of the hip and knee joints of the exoskeleton are consistently less than 1.5°and 2.5°,respectively.The proposed control algorithm effectively compensates for modeling errors and exhibits high robustness. 展开更多
关键词 Lower limb exoskeleton model compensation rbf neural network Computed torque method
下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
2
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 rbf 交通 预言 短期 ARIMA
下载PDF
A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model
3
作者 Yiqing YU 《International Journal of Technology Management》 2015年第4期126-128,共3页
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n... In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power. 展开更多
关键词 the trajectory of floats rbf neural network model Global optimization model 0-1 knapsack problem improved geneticalgorithm
下载PDF
基于自适应RBF神经网络具有模型不确定性的四旋翼无人机指定时间预设性能控制方法
4
作者 张园 郑鸿基 +3 位作者 刘海涛 韦丽娇 沈德战 赵振华 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期64-73,共10页
四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立... 四旋翼无人机具有强耦合和欠驱动的特点,在飞行过程中很容易受到外界干扰,进而影响整个无人机系统的稳定性和精度。为此,提出了一种基于RBF神经网络的指定时间预设性能约束控制策略。首先,针对四旋翼无人机的不确定数学模型难以精确建立,并且在执行任务过程中存在外部未知扰动问题,提出了一种基于指定时间预设性能控制方法,将四旋翼无人机的轨迹跟踪问题转换为对位置子系统和姿态子系统的期望指令跟踪问题;其次,在设计控制器过程中,为了解决“微分爆炸”问题产生的滤波器误差,引入一种新型滤波误差补偿方法,通过RBF神经网络逼近外部未知扰动,并将预测结果补偿给控制器以提高轨迹跟踪的鲁棒性。最后,应用仿真模拟方法验证无人机控制系统稳定性和性能优势,通过飞行试验验证,微风聚拢环境下实际飞行轨迹与仿真模拟结果趋于一致,自主轨迹跟踪起降位置偏差小于1 cm,证明了所提出算法的有效性。 展开更多
关键词 四旋翼无人机 rbf神经网络 轨迹跟踪控制 预设性能约束 模型不确定性
下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法
5
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
智能汽车轨迹跟踪MPC-RBF-SMC协同控制策略研究
6
作者 张良 蒋瑞洋 +2 位作者 卢剑伟 程浩 雷夏阳 《汽车工程师》 2024年第5期11-19,共9页
针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当... 针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当前状态车辆期望横摆角速度,并将其与实际横摆角速度的偏差输入RBF-SMC控制器,利用RBF快速逼近非线性模型的特点,结合滑模控制输出前轮转角,实现车辆的横向轨迹跟踪控制。仿真结果表明,与传统的控制器相比,该方法轨迹跟踪精度显著提高,并在不同行驶工况下表现出较好的鲁棒性。 展开更多
关键词 车辆运动学模型 模型预测控制 径向基神经网络 滑模控制
下载PDF
Calibration Method Based on RBF Neural Networks for Soil Moisture Content Sensor 被引量:9
7
作者 杨敬锋 李亭 +1 位作者 卢启福 陈志民 《Agricultural Science & Technology》 CAS 2010年第2期140-142,共3页
Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content senso... Temporal and spatial variation of soil moisture content is significant for crop growth,climate change and the other fields.In order to overcome shortage of non-linear output voltage of TDR3 soil moisture content sensor and increase soil moisture content data collection and computational efficiency,this paper presents a RBF neural network calibration method of soil moisture content based on TDR3 soil moisture sensor and wireless sensor networks.Experiment results show that the calibration method is effective... 展开更多
关键词 Calibration model Soil Moisture Sensor Wireless Sensor networks rbf neural networks
下载PDF
基于BP-ANN与RBF-ANN的钢筋与混凝土黏结强度预测模型研究 被引量:2
8
作者 李涛 刘喜 +1 位作者 李振军 赵小琴 《南京工业大学学报(自然科学版)》 CAS 北大核心 2024年第1期112-118,共7页
为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试... 为研究神经网络对钢筋与混凝土黏结强度的预测能力以及神经网络的输出性能,基于大量的试验数据,提出一种基于改进神经网络的变形钢筋与混凝土黏结强度预测模型,对混凝土结构的研究与实际工程应用均有着重要的意义。收集290组黏结锚固试验数据,引入基于反向传播人工神经网络(BP-ANN)与径向基函数神经网络(RBF-ANN)算法,揭示混凝土强度、保护层厚度、钢筋直径、锚固长度及配箍率对变形钢筋与混凝土黏结性能的影响规律,建立基于改进神经网络算法的钢筋与混凝土黏结强度预测模型。对比分析不同数据预处理方法和训练神经元个数对建议模型预测结果的影响,评估各经典模型与建议模型的预测精度和离散性,提出临界锚固长度计算公式。结果表明:BP-ANN预测值与试验值比值的均值、标准差及变异系数分别为1.009、0.188、0.86,其预测精度略高于RBF-ANN;建议模型能够更准确、更稳定地预测钢筋与混凝土的黏结强度,该方法为解决钢筋与混凝土黏结问题提供了新思路。 展开更多
关键词 钢筋混凝土 黏结强度 改进神经网络 影响参数 预测模型 黏结锚固试验 BP-ANN rbf-ANN
下载PDF
Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand 被引量:1
9
作者 Dongyang SHANG Xiaopeng LI +1 位作者 Meng YIN Fanjie LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期417-439,共23页
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur... In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH. 展开更多
关键词 Space flexible manipulator rbf neural network Underactuated hand Dynamic models model simplification
原文传递
PARAMETERS DETERMINATION METHOD OF PHASE-SPACE RECONSTRUCTION BASED ON DIFFERENTIAL ENTROPY RATIO AND RBF NEURAL NETWORK 被引量:4
10
作者 Zhang Shuqing Hu Yongtao +1 位作者 Bao Hongyan Li Xinxin 《Journal of Electronics(China)》 2014年第1期61-67,共7页
Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reco... Phase space reconstruction is the first step of recognizing the chaotic time series.On the basis of differential entropy ratio method,the embedding dimension opt m and time delay t are optimal for the state space reconstruction could be determined.But they are not the optimal parameters accepted for prediction.This study proposes an improved method based on the differential entropy ratio and Radial Basis Function(RBF)neural network to estimate the embedding dimension m and the time delay t,which have both optimal characteristics of the state space reconstruction and the prediction.Simulating experiments of Lorenz system and Doffing system show that the original phase space could be reconstructed from the time series effectively,and both the prediction accuracy and prediction length are improved greatly. 展开更多
关键词 Phase-space reconstruction chaotic time series Differential entropy ratio Embedding dimension Time delay Radial Basis Function(rbf) neural network
下载PDF
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
11
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks T-S fuzzy model chaotic search least square estimation modelING
下载PDF
An Intelligence Computational Approach for the Fractional 4D Chaotic Financial Model
12
作者 Wajaree Weera Thongchai Botmart +4 位作者 Charuwat Chantawat Zulqurnain Sabir Waleed Adel Muhammad Asif Zahoor Raja Muhammad Kristiawan 《Computers, Materials & Continua》 SCIE EI 2023年第2期2711-2724,共14页
The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure.The stochastic procedures mainly d... The main purpose of the study is to present a numerical approach to investigate the numerical performances of the fractional 4-D chaotic financial system using a stochastic procedure.The stochastic procedures mainly depend on the combination of the artificial neural network(ANNs)along with the Levenberg-Marquardt Backpropagation(LMB)i.e.,ANNs-LMB technique.The fractional-order term is defined in the Caputo sense and three cases are solved using the proposed technique for different values of the fractional orderα.The values of the fractional order derivatives to solve the fractional 4-D chaotic financial system are used between 0 and 1.The data proportion is applied as 73%,15%,and 12%for training,testing,and certification to solve the chaotic fractional system.The acquired results are verified through the comparison of the reference solution,which indicates the proposed technique is efficient and robust.The 4-D chaotic model is numerically solved by using the ANNs-LMB technique to reduce the mean square error(MSE).To authenticate the exactness,and consistency of the technique,the obtained performances are plotted in the figures of correlation measures,error histograms,and regressions.From these figures,it can be witnessed that the provided technique is effective for solving such models to give some new insight into the physical behavior of the model. 展开更多
关键词 Financial model chaotic Levenberg-Marquardt Backpropagation fractional order artificial neural networks reference dataset
下载PDF
基于数据同化方法修正RBF神经网络的高维气动力建模预测
13
作者 张迎 张鑫 +1 位作者 张卫国 邓子辰 《气体物理》 2024年第3期46-54,共9页
通过数据同化方法修正径向基函数(radial basis function,RBF)神经网络,以提高高维气动力的建模精度。通过在传统RBF神经网络的核函数中引修正量γ,使用EnKF滤波数据同化算法修正该矫正因子,并将其应用于CRA309旋翼翼型的高维气动力建... 通过数据同化方法修正径向基函数(radial basis function,RBF)神经网络,以提高高维气动力的建模精度。通过在传统RBF神经网络的核函数中引修正量γ,使用EnKF滤波数据同化算法修正该矫正因子,并将其应用于CRA309旋翼翼型的高维气动力建模预测中。结果发现数据同化方法采用非侵入的方式,在不破坏神经网络整体架构的情况下仅对核函数的矫正因子进行修正,大幅减少优化参数与变量,显著提升了RBF神经网络的建模精度和效率。将修正后的RBF神经网络模型应用于高维气动力建模中,用仿真数据替代对气动力参数进行预测。设计结果验证了预测模型的可行性,在风洞试验数据较少的情况下对提高试验数据的利用效率具有一定的工程实用价值。 展开更多
关键词 rbf神经网络 数据同化 气动力建模 泛化能力
下载PDF
Exponential synchronization of general chaotic delayed neural networks via hybrid feedback 被引量:1
14
作者 Mei-qin LIU Jian-hai ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第2期262-270,共9页
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic syste... This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws. 展开更多
关键词 Exponential synchronization Hybrid feedback Drive-response conception Linear matrix inequality (LMI) chaotic neural network model
下载PDF
Research on the Correlation Between Physical Examination Indexes and TCM Constitutions Using the RBF Neural Network 被引量:3
15
作者 LUO Yue LIU Yu-Nan +1 位作者 LIN Bing WEN Chuan-Biao 《Digital Chinese Medicine》 2020年第1期11-19,共9页
Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural n... Objective To establish correlation models between various physical examination indexes and traditional Chinese medicine(TCM)constitutions,and explore their relationships based on the radial basis function(RBF)neural network.Methods The raw data of physical examination indexes and TMC constitutions of 650 subjects who underwent a physical examination were cleaned,classified and sorted,on the basis of which valid data were retrieved and categorized into a training dataset and a test dataset.Subsequently,the RBF neural network was applied to the valid samples in the training set to establish correlation models between various physical examination indexes and TCM constitutions.The accuracy and the error margin of the correlation model were then verified using the valid samples in the test set.Results Of all selected samples,the highest accuracy rates were 80% for the blood lipid index-TCM constitution model;100% for the renal function index-TCM constitution model;100% for the blood routine(male)index-TCM constitution model;88.8% for the blood routine(female)index-TCM constitution model;84.1%for the urine routine index-TCM constitution model;and 100% for the blood transfusion index-TCM constitution model.Conclusions The samples selected in this study suggested that there is a strong correlation between physical examination indexes and TCM constitutions,making it feasible to apply the established correlation models to TCM constitution identification. 展开更多
关键词 TCM constitution Physical examination index Correlation model rbf neural network
下载PDF
改进GA-RBF神经网络的水厂混凝投药预测
16
作者 刘海林 王庭有 《供水技术》 2024年第1期40-45,共6页
为了提高水厂混凝剂投加量预测准确性,针对投药系统易受多种水质因素影响,且投药后净水过程存在高度非线性的特点,通过改进遗传算法(GA)优化径向基函数神经网络(也称为RBF神经网络)的权值ω_i和高斯基函数中心宽度向量σ_i,构建GA-RBF... 为了提高水厂混凝剂投加量预测准确性,针对投药系统易受多种水质因素影响,且投药后净水过程存在高度非线性的特点,通过改进遗传算法(GA)优化径向基函数神经网络(也称为RBF神经网络)的权值ω_i和高斯基函数中心宽度向量σ_i,构建GA-RBF神经网络净水厂投药量预测模型。Matlab仿真结果表明,GA-RBF神经网络预测模型可通过实现全局逼近来回避极值陷阱,提高了稳定性和全局寻优能力,相较于单一RBF神经网络预测模型,GA-RBF神经网络预测模型的拟合优度提高5.474%,平均绝对误差降低了4.14%,根均方误差降低3.392%,迭代速度和预测精度都有所提高,数据拟合能力更强。 展开更多
关键词 混凝剂投加量 投药系统 遗传算法 rbf神经网络 预测模型
下载PDF
A new neural network model for the feedback stabilization of nonlinear systems
17
作者 Mei-qin LIU Sen-lin ZHANG Gang-feng YAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第8期1015-1023,共9页
A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constrain... A new neural network model termed ‘standard neural network model’ (SNNM) is presented, and a state-feedback control law is then designed for the SNNM to stabilize the closed-loop system. The control design constraints are shown to be a set of linear matrix inequalities (LMIs), which can be easily solved by the MATLAB LMI Control Toolbox to determine the control law. Most recurrent neural networks (including the chaotic neural network) and nonlinear systems modeled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be stabilization controllers synthesized in the framework of a unified SNNM. Finally, three numerical examples are provided to illustrate the design developed in this paper. 展开更多
关键词 Standard neural network model (SNNM) Linear matrix inequality (LMI) Nonlinear control Asymptotic stability chaotic cellular neural network Takagi and Sugeno (T-S) fuzzy model
下载PDF
Intelligent Networks for Chaotic Fractional-Order Nonlinear Financial Model
18
作者 Prem Junswang Zulqurnain Sabir +3 位作者 Muhammad Asif Zahoor Raja Waleed Adel Thongchai Botmart Wajaree Weera 《Computers, Materials & Continua》 SCIE EI 2022年第9期5015-5030,共16页
The purpose of this paper is to present a numerical approach based on the artificial neural networks(ANNs)for solving a novel fractional chaotic financial model that represents the effect of memory and chaos in the pr... The purpose of this paper is to present a numerical approach based on the artificial neural networks(ANNs)for solving a novel fractional chaotic financial model that represents the effect of memory and chaos in the presented system.The method is constructed with the combination of the ANNs along with the Levenberg-Marquardt backpropagation(LMB),named the ANNs-LMB.This technique is tested for solving the novel problem for three cases of the fractional-order values and the obtained results are compared with the reference solution.Fifteen numbers neurons have been used to solve the fractional-order chaotic financial model.The selection of the data to solve the fractional-order chaotic financial model are selected as 75%for training,10%for testing,and 15%for certification.The results indicate that the presented approximate solutions fit exactly with the reference solution and the method is effective and precise.The obtained results are testified to reduce the mean square error(MSE)for solving the fractional model and verified through the various measures including correlation,MSE,regression histogram of the errors,and state transition(ST). 展开更多
关键词 Financial model chaotic FRACTIONAL-ORDER reference dataset artificial neural networks levenberg-marquardt backpropagation
下载PDF
基于动力学模型优化PSO-RBF神经网络的水下机械臂控制
19
作者 田金鑫 原忠虎 吴宝举 《工业控制计算机》 2024年第10期56-58,61,共4页
随着我国海洋资源开发与利用的增加,对海洋资源开发能力的要求也日益提高。然而,我国在海洋探测方面的研究仍处于起步阶段,面临着复杂的海洋环境和海洋主权保护的挑战。研究聚焦于智能化水下机器人-机械臂系统UVMS的研究。基于Lagrange... 随着我国海洋资源开发与利用的增加,对海洋资源开发能力的要求也日益提高。然而,我国在海洋探测方面的研究仍处于起步阶段,面临着复杂的海洋环境和海洋主权保护的挑战。研究聚焦于智能化水下机器人-机械臂系统UVMS的研究。基于Lagrange法和Morison方程,精确建立了六自由度水下机械臂的动力学模型。为了提高系统的稳定性和轨迹跟踪的准确性,采用了适应值优化的PSO粒子群算法结合RBF神经网络,并将其应用于水下机械臂的动力学模型中。仿真实验结果表明,改进的PSO-RBF神经网络自适应滑模控制算法较传统PID及RBF神经网络算法提前约0.3 s和0.1 s确定控制参数,提前达到稳定状态。 展开更多
关键词 UVMS rbf神经网络 动力学建模 PSO粒子群算法 水下机械臂 滑模控制
下载PDF
Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant
20
作者 陈跃华 曹广益 朱新坚 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期42-46,52,共6页
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t... This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely. 展开更多
关键词 molten carbonate fuel cell (MCFC) radial basis function rbfneural network model nonlinear model predictive control (NMPC) golden mean method
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部