In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] a...In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.展开更多
In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the soluti...In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.展开更多
In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In th...In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit formula for the maximum absolute truncated error of the Adomian’s series solution. Also, we prove that the solution of nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were introduced.展开更多
This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorit...This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorithm and their corresponding iterated correction schemes for this kind of equations.The superconvergemceof the numerical solutions of these two algorithms is proved. Not only are the results concerning the Hammersteinintegral equations generalized to nonlinear Fredilolm equations of the second kind, but also more precise resultsare obtained by tising the wavelet method.展开更多
This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by...This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.展开更多
In this article, we use scaling function interpolation method to solve linear Fredholm integral equations, and we prove a convergence theorem for the solution of Fredholm integral equations. We present two examples wh...In this article, we use scaling function interpolation method to solve linear Fredholm integral equations, and we prove a convergence theorem for the solution of Fredholm integral equations. We present two examples which have better results than others.展开更多
Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations ...Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.展开更多
We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and p...We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.展开更多
We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with sol...We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.展开更多
The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures...The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some applications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in.展开更多
The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate reg...The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.展开更多
The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By a...The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.展开更多
Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be a...Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.展开更多
In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the...In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.展开更多
This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item,...This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item, we give an approximation with high precision. The existence condition of the solution for the Fredholm equation is given. Furthermore, the error analyses are presented. Finally, the numerical examples verify the theoretical analysis, and show the efficiency of the algorithm we discussed.展开更多
In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this met...In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.展开更多
A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are consider...A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.展开更多
Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams...Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.展开更多
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
文摘In this paper, we suggest a method for solving Fredholm integral equation of the first kind based on wavelet basis. The continuous Legendre and Chebyshev wavelets of the first, second, third and fourth kind on [0,1] are used and are utilized as a basis in Galerkin method to approximate the solution of integral equations. Then, in some examples the mentioned wavelets are compared with each other.
文摘In recent papers, Babolian & Delves [2] and Belward[3] described a Chebyshev series method for the solution of first kind integral equations. The expansion coefficients of the solution are determined as the solution of a mathematical programming problem.The method involves two regularization parameters, Cf and r, but values assigned to these parameters are heuristic in nature. Essah & Delves[7] described an algorithm for setting these parameters automatically, but it has some difficulties. In this paper we describe three iterative algorithms for computing these parameters for singular and non-singular first kind integral equations. We give also error estimates which are cheap to compute. Finally, we give a number of numerical examples showing that these algorithms work well in practice.
文摘In recent papers the solution of nonlinear Fredholm integral equations was discussed using Adomian decomposition method (ADM). For case in which the integrals are analytically impossible, ADM can not be applied. In this paper a discretized version of the ADM is introduced and the proposed version will be called discrete Adomian decomposition method (DADM). An accelerated formula of Adomian polynomials is used in calculations. Based on this formula, a new convergence approach of ADM is introduced. Convergence approach is reliable enough to obtain an explicit formula for the maximum absolute truncated error of the Adomian’s series solution. Also, we prove that the solution of nonlinear Fredholm integral equation by DADM converges to ADM solution. Finally, some numerical examples were introduced.
文摘This paper discusses the numerical solutions for the nonlinear Fredholm integral equations of thesecond kind. On the basis of the Galerkin method, the author establishes a Galerkin algorithm, a Wavelet-Galerkinalgorithm and their corresponding iterated correction schemes for this kind of equations.The superconvergemceof the numerical solutions of these two algorithms is proved. Not only are the results concerning the Hammersteinintegral equations generalized to nonlinear Fredilolm equations of the second kind, but also more precise resultsare obtained by tising the wavelet method.
文摘This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.
文摘In this article, we use scaling function interpolation method to solve linear Fredholm integral equations, and we prove a convergence theorem for the solution of Fredholm integral equations. We present two examples which have better results than others.
文摘Integral equations theoretical parts and applications have been studied and investigated in previous works. In this work, results on investigations of the uniqueness of the Fredholm-Stiltjes linear integral equations solutions of the third kind were considered. Volterra integral equations of the first and third kind with smooth kernels were studied, and proof of the existence of a multiparameter family of solutions is described. Additionally, linear Fredholm integral equations of the first kind were investigated, for which Lavrent’ev regularizing operators were constructed.
基金Research supported in part by Hong Kong Research Grant Council grats no.CUHK178/83E
文摘We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.
基金Supported by the NNSF of China (10471107)RFDP of Higher Education of China (20060486001)
文摘We transform the singular integral equations with solutions simultaneously having singularities of higher order at infinite point and at several finite points on the real axis into ones along a closed contour with solutions having singularities of higher order, and for the former obtain the extended Neother theorem of complete equation as well as the solutions and the solvable conditions of characteristic equation from the latter. The conclusions drawn by this article contain special cases discussed before.
文摘The Rayleigh-Ritz and the inverse iteration methods are used in order to compute the eigenvalues of 3D Fredholm-Stieltjes integral equations, i.e. 3D Fredholm equations with respect to suitable Stieltjes-type measures. Some applications are shown, relevant to the problem of computing the eigenvalues of a body charged by a finite number of masses concentrated on points, curves or surfaces lying in.
文摘The regularized integrodifferential equation for the first kind of Fredholm, integral equation with a complex kernel is derived by generalizing the Tikhonov regularization method and the convergence of approximate regularized solutions is discussed. As an application of the method, an inverse problem in the two-dimensional wave-making problem of a flat plate is solved numerically, and a practical approach of choosing optimal regularization parameter is given.
文摘The dual integral equations of vertical forced vibration of elastic plate on an elastic half space subject to harmonic uniform distribution loading are established according to the mixed boundary-value condition. By applying Abel transformation the dual integral equations are reduced to Fredholm integral equation of the second kind which is solved numerically.
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘Abstract A new function-valued partial Padé-type approximation was introduced in the polynomial space, and an explicit determinant formula was derived by means of some orthogonal polynomials. This method can be applied to estimating surplus eigenvalues of the Fredholm integral equation of the second kind when its partial eigenvalues have been known, and at the same time, it can be applied to solving the approximating solution of the given equation.
文摘In this paper, we will use the successive approximation method for solving Fredholm integral equation of the second kind using Maple18. By means of this method, an algorithm is successfully established for solving the non-linear Fredholm integral equation of the second kind. Finally, several examples are presented to illustrate the application of the algorithm and results appear that this method is very effective and convenient to solve these equations.
文摘This work mainly focuses on the numerical simulation of the Fredholm integral equation of the second kind. Applying the idea of Gauss-Lobatto quadrature formula, a numerical method is developed. For the integral item, we give an approximation with high precision. The existence condition of the solution for the Fredholm equation is given. Furthermore, the error analyses are presented. Finally, the numerical examples verify the theoretical analysis, and show the efficiency of the algorithm we discussed.
文摘In this paper, we use the Sinc Function to solve the Fredholme-Volterra Integral Equations. By using collocation method we estimate a solution for Fredholme-Volterra Integral Equations. Finally convergence of this method will be discussed and efficiency of this method is shown by some examples. Numerical examples show that the approximate solutions have a good degree of accuracy.
基金School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic.
文摘A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.
基金Project supported by the National Natural Science Foundation of China(No.11672131)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures of China(No.MCMS-0217G02)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.11672131)。
文摘Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.