[Objective] This study aimed to provide basis for rational fertilizer application of wheat in fluvo-aquic soil in the northwest of Shandong Province.[Method] In this paper,the treatments of reduced N,P and K were set ...[Objective] This study aimed to provide basis for rational fertilizer application of wheat in fluvo-aquic soil in the northwest of Shandong Province.[Method] In this paper,the treatments of reduced N,P and K were set in order to explore the effects of fertilizer recommendation based on ASI systematic approach on wheat yield,agronomic efficiency and recovery rate of nutrients.[Result] Nitrogen was the main limiting factor for wheat production in that area,followed by phosphorus,and the third was potassium.Compared with the optimum treatment (OPT),the reduction of N,P and K reduced the grain yield obviously,which came up to 22.4%,14.4% and 13.4% respectively.There were no obvious differences in grain yield among Farmer's Fertilization Practice (FP),60% OPT-N and OPT treatment.[Conclusion] Agronomic efficiency of N,P and K was 6.3,12.9 and 10 kg/kg respectively.The recovery rates of N,P and K in wheat season were 16.41%,17.27% and 27.27% respectively.展开更多
The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P a...The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment(1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization(CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg^(–1) for every 100 kg ha^(–1) of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha^(–1), soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers(NP and NPK), and increased by 5.0 and 2.0 mg kg^(–1), respectively, when treated with chemical fertilizers combined with manure(NPKM and 1.5 NPKM) for every 100 kg ha^(–1) of P surplus. When P surplus was higher than the range of 729–884 kg ha^(–1), soil Olsen-P increased by 49.0 and 37.0 mg kg^(–1) in NPKM and 1.5 NPKM treatments, respectively, for every 100 kg ha^(–1) P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the "storage threshold" of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5 NPKM were 729 and 884 kg ha^(–1)P for more adsorption sites. According to the critical soil P values(CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures(NPKM and 1.5 NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer.展开更多
A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased w...A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.展开更多
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca...The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.展开更多
Experiments including two in laboratory and one in greenhouse were carried out to study non- exchangeable magnesium release from fluvo-aquic soils sampled from Daxing and changping counties located in the suburbs of B...Experiments including two in laboratory and one in greenhouse were carried out to study non- exchangeable magnesium release from fluvo-aquic soils sampled from Daxing and changping counties located in the suburbs of Beijing and Mg relative availability of the two soils to plants. In a batch experiment in laboratory the soils were incubated under wet conditions and alternation of dry and wet conditions and determined for amount of Mg released at the 4th, 8th and 12th week, respectively, after extraction of exchangeable Mg with 1 mol L-1 NH4Ac. The amount of Mg released from the soil of Daxing was higher than from the soil of Changping, which was in accordance with the fact that the soil of Daxing had higher contents of all forms of Mg than that of Changping. There was little difference in Mg release from soils between wet conditions and alternation of dry and wet conditions. About 1%~2% of the total non-exchangeable Mg might be released within 12 weeks of incubation, restoring about 30%~35% of the original soil exchangeable Mg. Results of the experiment on kinetics of Mg release from the soils through continuous extractions with 0.5 mol L-1 NH4Ac (pH 7.0) on a continuous flow apparatus in laboratory showed that Mg released rapidly in the beginning, decreased sharply with time and kept stable at 60 and 240 min for the soils of Changping and Daxing, respectively. Among the five mathematical models used to describe the kinetics of Mg release, the parabolic diffusion equation best fitted the cumulative Mg release, indicating that diffusion of Mg out of the soils might be the controlling process. The experiment of exhaustive cropping with 1 crop of tomato (Lycopersicon esculentum Mill.) followed by six crops of corn (Zea mays L.) in greenhouse showed that soil exchangeable Mg decreased remarkably with cropping. After three crops, the percentage of the total plant Mg uptake that came from soil non-exchangeable Mg was 29.5% for the soil from Changping and 35% for the soil from Daxing. About 50% of the total Mg uptake by plants in the six crops was believed to come from the soil non-exchangeable Mg form.展开更多
In order to verify organic carbon cycle under conservation tillage condition and the promotion mechanism of soil fertility and offer scientific theory support for the popularization and application of conservation til...In order to verify organic carbon cycle under conservation tillage condition and the promotion mechanism of soil fertility and offer scientific theory support for the popularization and application of conservation tillage technological, the research investigated effects of different tillage treatments on the content of total organic car- bon, total nitrogen and different components of them in fluvo-aquic soil based on a long-term experiment site of conservation tillage. The research revealed effects of conservation tillage on the content of carbon, nitrogen in fluvo-aquic soil by study the distribution of soil total organic carbon, total nitrogen, dissolved organic carbon, dissolved organic nitrogen, microbial biomass carbon, liable carbon in different soil depth under different tillage treatments. The results showed that compared to con- ventional tillage treatment, contents of soil total organic carbon under intermittent tillage (tillage once every 2 or 4 years) and no-tillage treatment improved by 1.81%, 6.43%, 14.04%, respectively and contents of soil total nitrogen went up by 0.80%, 10.04%, 7.93%, respectively. Contents of soil total organic carbon and total nitrogen in 10-20 cm soil layer under no-tillage treatment were significantly lower than the other treatments. Under the condition of straw returned, intermittent tillage and no- tillage could significantly improve the content of soil dissolved organic carbon and ni- trogen in 0-5 cm and 5-10 cm soil. Compared to conventional tillage treatment, content of soil microbial biomass carbon and liable carbon in 0-5 cm soil under in- termittent tillage and no-tillage were improved in varying degrees. Content of soil microbial biomass carbon in 10-20 cm soil layer under no-tillage treatment was sig- nificantly lower than the other treatments. Straw returning had improved the content of soil total organic carbon, total nitrogen, dissolved organic carbon and other com- ponents of active organic carbon in varying degrees. In general, conservation tillage measures could increase carbon and nitrogen storage in 0-5 cm soil layer, the negative effects of "nutrients enrichment in surface" under no-tillage condition could be ameliorated by intermittent tillage.展开更多
This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change...This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change of Olsen-P to TP(PAC)by 33-year fertilization experiments in winter wheat-summer maize rotation system in Shandong fluvo-aquic soil.Eight treatments were designed as no fertilization(CK),nitrogen fertilizer(N),nitrogen and phosphate fertilizer(NP),nitrogen and potassium fertilizer(NK),phosphate and potassium fertilizer(PK),nitrogen-phosphate-potassium fertilizer(NPK),reduced NPK fertilizer(N(15)PK),and increased NPK fertilizer(N_(25)PK).Meanwhile,eight organic fertilizer-added treatments were designed based on the application of inorganic fertilizer the same as the above ones.The results showed that TP,Olsen-P and PAC of treatments added with organic fertilizer were higher than those without organic fertilizer,and those of the treatments applied with phosphate fertilizer were higher than those of no phosphate fertilizer.With the increase of years,soil P pool decreased due to crop absorption,nutrient loss and morphological transformation and other causes under the treatments of without and only phosphate fertilizer,while remained stable under the treatments added with organic fertilizer.The PAC values were generally lower in fluvo-aquic soil,and it could be improved by the application of organic fertilizer.On the whole,the application of chemical phosphate fertilizer combined with organic fertilizer could improve the phosphorus content in soil and ensure the supply of phosphorus nutrition.This study would provide scientific basis for fertilization management and soil fertility in fluvo-aquic soil.展开更多
The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatureswere studied. The results showed: 1) The first order equations were the most suitable forfitting the adsorption under variou...The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatureswere studied. The results showed: 1) The first order equations were the most suitable forfitting the adsorption under various temperature levels with constant K+ concentration indisplacing fluid. With temperature increasing, the fitness of Elovich equation increased,while those of power equation and parabolic diffusion equation decreased; 2)the apparentadsorption rate constant ka and the product of ka multiplied by the apparent equilibriumadsorption qincreased when temperature increased, while the apparent equilibrium adsorptionqreduced; 3)temperature influenced hardly the reaction order, the order of concentrationand adsorpton site were always 1 under various temperatures, if they were taken intoaccount simultaneously, the adsorption should be a two-order reaction process; 4)theGibbs free energy change △G of potassium adsorption were negative, ranged from -4444.56to -2450.63Jmol-1,and increased with temperature increasing, while enthalpy change △H,entropy change △S, apparent adsorption activation Ea, adsorption activation energy E1and desorption activation energy E2 were temperature-independent; 5)the adsorption wasspontaneous process with heat releasing and entropy dropping, fluvo-aquic soil releasedmore heat than cinnamon soil.展开更多
In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone p...In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations.展开更多
Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making cont...Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.展开更多
Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage ...Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.展开更多
Two time-domain reflectometry (TDR) systems and a new impedance measuring instrument, Thetaprobe,which are based on determination of soil dielectric constant, were used to measure water content of clayeyred soil to er...Two time-domain reflectometry (TDR) systems and a new impedance measuring instrument, Thetaprobe,which are based on determination of soil dielectric constant, were used to measure water content of clayeyred soil to eraluate the accuracy of these instruments. The results indicated that these instruments shouldbe carefUlly re-calibrated before being applied in clayey red soil. With a new calibration curve fed into one ofthe TDR systems tested, nase system, the measured data compared well with tho8e by standard oven-dryingmethod.展开更多
Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville ...Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastruc...Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed.展开更多
The saturated hydraulic conductivity of a soil is the main parameter for modeling the water flow through the soil and determination of seepage losses. In addition, hydraulic conductivity of compacted soil layers is cr...The saturated hydraulic conductivity of a soil is the main parameter for modeling the water flow through the soil and determination of seepage losses. In addition, hydraulic conductivity of compacted soil layers is critical component for designing liner and cover systems for waste landfills. Hydraulic conductivity can be predicted using empirical relationships, capillary models, statistical models and hydraulic radius theories [1]. In the current research work the reliability of Kozeny-Carman equation for the determination of the hydraulic conductivity of compacted clayey soils, is evaluated. The relationship between the liquid limit and the specific surface of the tested samples is also investigated. The resulting equation gives the ability for quick estimation of specific surface and hydraulic conductivity of the compacted clayey samples. The results presented here show that the Kozeny-Carman equation provides good predictions of the hydraulic conductivity of homogenized clayey soils compacted under given compactive effort, despite the consensus set out in the literature.展开更多
The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution condi...The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.展开更多
This paper is an attempt to solve the soil-pile interaction problems using the boundary element method(BEM).A computer package called PGroupN,which deals mainly with the analysis of the pile group problem,is employe...This paper is an attempt to solve the soil-pile interaction problems using the boundary element method(BEM).A computer package called PGroupN,which deals mainly with the analysis of the pile group problem,is employed in this study.Parametric studies are carried out to assess the impacts of the pile diameter,pile length,ratio of spacing to diameter and the thickness of soil stratum.The external load is applied incrementally and,at each increment,a check is made that the stress state at the pile-soil interfaces does not violate the yield criteria.This is achieved by specifying the limited stresses of the soil for the axial pile shaft capacity and end-bearing resistance.The elements of the pile-soil interface yielded can take no additional load,and any increase in load is therefore redistributed between the remaining elements until all elements have failed.Thus,by successive application of loading increments,the entire load-displacement relationship for the pile group is determined.It is found that as the applied load reaches the ultimate bearing capacity of the pile group,all the piles will share the same amount of load.An exception to this case is for the center pile in a group of 9 piles embedded in clay,which is not consistent with the behaviors of the other piles in the group even if the load reaches the ultimate state.For the 4 piles group embedded in clay,the maximum load carried by the base does not exceed 8% of the load carried by each pile with different diameters.This low percentage ascertains that the piles embedded in cohesive soils carry most of the load throughout their shafts.展开更多
The natural clayey soils are usually structural and unsaturated,which makes their mechanical properties quite different from the remolded saturated soils.A structural constitutive model is proposed to simulate the bon...The natural clayey soils are usually structural and unsaturated,which makes their mechanical properties quite different from the remolded saturated soils.A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism.In this model,the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory,and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic,whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model.The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils.Parametric analyses of the effects of damage variables on the model predictions are further carried out,which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.展开更多
Palm fiber is one of the favorable materials used in stabilization of soft soil in geotechnical engineering projects in recent years due to its nature of sustainability,no harm to the environment,biodegradability,avai...Palm fiber is one of the favorable materials used in stabilization of soft soil in geotechnical engineering projects in recent years due to its nature of sustainability,no harm to the environment,biodegradability,availability and costeffectiveness in the context of widespread appeal from the world for returning to nature and protecting the earth our homestead.This paper is aimed at exploring the mechanical performance of Shanghai clayey soil reinforced with palm fiber.The unconfined compressive tests are carried out on samples treated with palm fibers of different lengths and contents,and the unconfined compressive strength(UCS),ductility rate(DR),secant modulus(SM),energy absorption capacity(EAC)and failure pattern(FP)of the reinforced and unreinforced samples have been analyzed with regard to their relationship with palm fiber contents and lengths.Then multiple regression,grey correlation and general correlation relationship analysis are applied to the resultant test data so as to obtain the mathematical and statistical equation of related soil indexes.It has been concluded from the analysis that the unconfined compressive strength,ductility and energy absorption capacity of reinforced soil will increase with the increase in content and length of palm fiber,which are maximized when palm fiber content and length are 0.4%and 15 mm,respectively.On the contrary,the secant modulus of reinforced soil decreases considerably with content and length of palm fiber as a whole.Additionally,the failure pattern also changes from brittle to ductile gradually with the content and length of palm fiber.The data provided by the analysis of reinforced soil can be referred to and used for the related geotechnical engineering in the future.And the mathematical model obtained from the statistical regression is significantly meaningful because it can be used to predict the soil performance without the need for doing the additional tests,with saving in cost and time.What’s more,the application of palm fiber to soft soil is completely in accordance to the concept of sustainable development and environment protection.展开更多
文摘[Objective] This study aimed to provide basis for rational fertilizer application of wheat in fluvo-aquic soil in the northwest of Shandong Province.[Method] In this paper,the treatments of reduced N,P and K were set in order to explore the effects of fertilizer recommendation based on ASI systematic approach on wheat yield,agronomic efficiency and recovery rate of nutrients.[Result] Nitrogen was the main limiting factor for wheat production in that area,followed by phosphorus,and the third was potassium.Compared with the optimum treatment (OPT),the reduction of N,P and K reduced the grain yield obviously,which came up to 22.4%,14.4% and 13.4% respectively.There were no obvious differences in grain yield among Farmer's Fertilization Practice (FP),60% OPT-N and OPT treatment.[Conclusion] Agronomic efficiency of N,P and K was 6.3,12.9 and 10 kg/kg respectively.The recovery rates of N,P and K in wheat season were 16.41%,17.27% and 27.27% respectively.
基金supported by the National Natural Science Foundation of China (41471249)the Special Scientific Research Fund of Agricultural Public Welfare Profession of China (201503120)
文摘The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment(1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization(CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg^(–1) for every 100 kg ha^(–1) of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha^(–1), soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers(NP and NPK), and increased by 5.0 and 2.0 mg kg^(–1), respectively, when treated with chemical fertilizers combined with manure(NPKM and 1.5 NPKM) for every 100 kg ha^(–1) of P surplus. When P surplus was higher than the range of 729–884 kg ha^(–1), soil Olsen-P increased by 49.0 and 37.0 mg kg^(–1) in NPKM and 1.5 NPKM treatments, respectively, for every 100 kg ha^(–1) P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the "storage threshold" of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5 NPKM were 729 and 884 kg ha^(–1)P for more adsorption sites. According to the critical soil P values(CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures(NPKM and 1.5 NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer.
基金Project supported by the National Science Fund for Distinguished Young Scholars,China(No.40325001)the National Basic Research and Development Program of China(No.2002CB410805)the Asia-Link Program(No.CN/AsiaLink/001(81468)).
文摘A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment.
基金supported by the National Basic Research Program of China(973 Program,2011CB100501)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2015BAD22B03)+1 种基金the National High-Tech R&D Program of China(2013AA102901)the Special Fund for Agro-scientific Research in the Public Interest,China(201203077)
文摘The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone.
文摘Experiments including two in laboratory and one in greenhouse were carried out to study non- exchangeable magnesium release from fluvo-aquic soils sampled from Daxing and changping counties located in the suburbs of Beijing and Mg relative availability of the two soils to plants. In a batch experiment in laboratory the soils were incubated under wet conditions and alternation of dry and wet conditions and determined for amount of Mg released at the 4th, 8th and 12th week, respectively, after extraction of exchangeable Mg with 1 mol L-1 NH4Ac. The amount of Mg released from the soil of Daxing was higher than from the soil of Changping, which was in accordance with the fact that the soil of Daxing had higher contents of all forms of Mg than that of Changping. There was little difference in Mg release from soils between wet conditions and alternation of dry and wet conditions. About 1%~2% of the total non-exchangeable Mg might be released within 12 weeks of incubation, restoring about 30%~35% of the original soil exchangeable Mg. Results of the experiment on kinetics of Mg release from the soils through continuous extractions with 0.5 mol L-1 NH4Ac (pH 7.0) on a continuous flow apparatus in laboratory showed that Mg released rapidly in the beginning, decreased sharply with time and kept stable at 60 and 240 min for the soils of Changping and Daxing, respectively. Among the five mathematical models used to describe the kinetics of Mg release, the parabolic diffusion equation best fitted the cumulative Mg release, indicating that diffusion of Mg out of the soils might be the controlling process. The experiment of exhaustive cropping with 1 crop of tomato (Lycopersicon esculentum Mill.) followed by six crops of corn (Zea mays L.) in greenhouse showed that soil exchangeable Mg decreased remarkably with cropping. After three crops, the percentage of the total plant Mg uptake that came from soil non-exchangeable Mg was 29.5% for the soil from Changping and 35% for the soil from Daxing. About 50% of the total Mg uptake by plants in the six crops was believed to come from the soil non-exchangeable Mg form.
基金Supported by Soil Testing Formula Fertilization Program~~
文摘In order to verify organic carbon cycle under conservation tillage condition and the promotion mechanism of soil fertility and offer scientific theory support for the popularization and application of conservation tillage technological, the research investigated effects of different tillage treatments on the content of total organic car- bon, total nitrogen and different components of them in fluvo-aquic soil based on a long-term experiment site of conservation tillage. The research revealed effects of conservation tillage on the content of carbon, nitrogen in fluvo-aquic soil by study the distribution of soil total organic carbon, total nitrogen, dissolved organic carbon, dissolved organic nitrogen, microbial biomass carbon, liable carbon in different soil depth under different tillage treatments. The results showed that compared to con- ventional tillage treatment, contents of soil total organic carbon under intermittent tillage (tillage once every 2 or 4 years) and no-tillage treatment improved by 1.81%, 6.43%, 14.04%, respectively and contents of soil total nitrogen went up by 0.80%, 10.04%, 7.93%, respectively. Contents of soil total organic carbon and total nitrogen in 10-20 cm soil layer under no-tillage treatment were significantly lower than the other treatments. Under the condition of straw returned, intermittent tillage and no- tillage could significantly improve the content of soil dissolved organic carbon and ni- trogen in 0-5 cm and 5-10 cm soil. Compared to conventional tillage treatment, content of soil microbial biomass carbon and liable carbon in 0-5 cm soil under in- termittent tillage and no-tillage were improved in varying degrees. Content of soil microbial biomass carbon in 10-20 cm soil layer under no-tillage treatment was sig- nificantly lower than the other treatments. Straw returning had improved the content of soil total organic carbon, total nitrogen, dissolved organic carbon and other com- ponents of active organic carbon in varying degrees. In general, conservation tillage measures could increase carbon and nitrogen storage in 0-5 cm soil layer, the negative effects of "nutrients enrichment in surface" under no-tillage condition could be ameliorated by intermittent tillage.
基金Supported by Sub-project of National Key Research and Development Program of China in the 13thFive-Year Plan of China(2016YFD0300804-5)Special Fund for Agro-scientific Research in the Public Interest(201503106)Special Construction Project of"Overseas Taishan Scholar"
文摘This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change of Olsen-P to TP(PAC)by 33-year fertilization experiments in winter wheat-summer maize rotation system in Shandong fluvo-aquic soil.Eight treatments were designed as no fertilization(CK),nitrogen fertilizer(N),nitrogen and phosphate fertilizer(NP),nitrogen and potassium fertilizer(NK),phosphate and potassium fertilizer(PK),nitrogen-phosphate-potassium fertilizer(NPK),reduced NPK fertilizer(N(15)PK),and increased NPK fertilizer(N_(25)PK).Meanwhile,eight organic fertilizer-added treatments were designed based on the application of inorganic fertilizer the same as the above ones.The results showed that TP,Olsen-P and PAC of treatments added with organic fertilizer were higher than those without organic fertilizer,and those of the treatments applied with phosphate fertilizer were higher than those of no phosphate fertilizer.With the increase of years,soil P pool decreased due to crop absorption,nutrient loss and morphological transformation and other causes under the treatments of without and only phosphate fertilizer,while remained stable under the treatments added with organic fertilizer.The PAC values were generally lower in fluvo-aquic soil,and it could be improved by the application of organic fertilizer.On the whole,the application of chemical phosphate fertilizer combined with organic fertilizer could improve the phosphorus content in soil and ensure the supply of phosphorus nutrition.This study would provide scientific basis for fertilization management and soil fertility in fluvo-aquic soil.
基金supported by the National Science Foundation of China(49391600)the Society Commonweal Fund(2001DIA20024).
文摘The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatureswere studied. The results showed: 1) The first order equations were the most suitable forfitting the adsorption under various temperature levels with constant K+ concentration indisplacing fluid. With temperature increasing, the fitness of Elovich equation increased,while those of power equation and parabolic diffusion equation decreased; 2)the apparentadsorption rate constant ka and the product of ka multiplied by the apparent equilibriumadsorption qincreased when temperature increased, while the apparent equilibrium adsorptionqreduced; 3)temperature influenced hardly the reaction order, the order of concentrationand adsorpton site were always 1 under various temperatures, if they were taken intoaccount simultaneously, the adsorption should be a two-order reaction process; 4)theGibbs free energy change △G of potassium adsorption were negative, ranged from -4444.56to -2450.63Jmol-1,and increased with temperature increasing, while enthalpy change △H,entropy change △S, apparent adsorption activation Ea, adsorption activation energy E1and desorption activation energy E2 were temperature-independent; 5)the adsorption wasspontaneous process with heat releasing and entropy dropping, fluvo-aquic soil releasedmore heat than cinnamon soil.
基金The National Natural Science Foundation of China(No.40702047)
文摘In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations.
文摘Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.
基金supported by the National Natural Science Foundation of China (41271240)
文摘Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.
文摘Two time-domain reflectometry (TDR) systems and a new impedance measuring instrument, Thetaprobe,which are based on determination of soil dielectric constant, were used to measure water content of clayeyred soil to eraluate the accuracy of these instruments. The results indicated that these instruments shouldbe carefUlly re-calibrated before being applied in clayey red soil. With a new calibration curve fed into one ofthe TDR systems tested, nase system, the measured data compared well with tho8e by standard oven-dryingmethod.
文摘Physical properties of compressed earth blocks reinforced with plastic wastes are compared to those of nonreinforced ones. These bricks are made with two clayey soils from two deposits of Congo located in Brazzaville and Yengola. Mineralogical and geotechnical analysis revealed that the soil of Brazzaville is mainly composed of kaolinite whereas that of Yengola is a mixture of kaolinite and illite. The amounts of clay (46 and 48%, respectively) are higher than those usually recommended for bricks’ production without stabilizers. Despite this difference of mineralogical compositions, the physical properties of these soils are quite similar. The compressive strength of the resulted bricks compacted with an energy of 2.8 MPa is about 1.5 MPa, which is the lower limit value allowed for adobes. Reinforcing with polyethylene waste nets increased the strength by about 20 to 30% and slightly enhanced resistance to water, Young’s modulus and strain to failure. However, the reinforcement had no significant effect either on bricks’ curing length or on their shrinkage.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
基金financial support of this research from Damascus University
文摘Clayey soils in Syria cover a total area of more than 20,000 km2 of the country, most of which are located in the southwestern region. In many places of the country, the clayey soils caused severe damage to infrastructures. Extensive studies have been carried out on the stabilization of clayey soils using lime. Syria is rich in both lime and natural pozzolana. However, few works have been conducted to investigate the influence of adding natural pozzolana on the geotechnical properties of lime-treated clayey soils. The aim of this paper is to understand the effect of adding natural pozzolana on some geotechnical properties of lime-stabilized clayey soils. Natural pozzolana and lime are added to soil within the range of 0%–20% and 0%–8%, respectively. Consistency, compaction, California bearing ratio (CBR) and linear shrinkage properties are particularly investigated. The test results show that the investigated properties of lime-treated clayey soils can be considerably enhanced when the natural pozzolana is added as a stabilizing agent. Analysis results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) show significant changes in the microstructure of the treated clayey soil. A better flocculation of clayey particles and further formation of cementing materials in the natural pozzolana-lime-treated clayey soil are clearly observed.
文摘The saturated hydraulic conductivity of a soil is the main parameter for modeling the water flow through the soil and determination of seepage losses. In addition, hydraulic conductivity of compacted soil layers is critical component for designing liner and cover systems for waste landfills. Hydraulic conductivity can be predicted using empirical relationships, capillary models, statistical models and hydraulic radius theories [1]. In the current research work the reliability of Kozeny-Carman equation for the determination of the hydraulic conductivity of compacted clayey soils, is evaluated. The relationship between the liquid limit and the specific surface of the tested samples is also investigated. The resulting equation gives the ability for quick estimation of specific surface and hydraulic conductivity of the compacted clayey samples. The results presented here show that the Kozeny-Carman equation provides good predictions of the hydraulic conductivity of homogenized clayey soils compacted under given compactive effort, despite the consensus set out in the literature.
基金Project(41902280)supported by the National Natural Science Foundation of ChinaProject(300102219105)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(LP1922)supported by the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering,ChinaProject(XJKFJJ201805)supported by the Open Foundation of Shaanxi Key Laboratory of Safety and Durability of Concrete Structures,China。
文摘The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.
文摘This paper is an attempt to solve the soil-pile interaction problems using the boundary element method(BEM).A computer package called PGroupN,which deals mainly with the analysis of the pile group problem,is employed in this study.Parametric studies are carried out to assess the impacts of the pile diameter,pile length,ratio of spacing to diameter and the thickness of soil stratum.The external load is applied incrementally and,at each increment,a check is made that the stress state at the pile-soil interfaces does not violate the yield criteria.This is achieved by specifying the limited stresses of the soil for the axial pile shaft capacity and end-bearing resistance.The elements of the pile-soil interface yielded can take no additional load,and any increase in load is therefore redistributed between the remaining elements until all elements have failed.Thus,by successive application of loading increments,the entire load-displacement relationship for the pile group is determined.It is found that as the applied load reaches the ultimate bearing capacity of the pile group,all the piles will share the same amount of load.An exception to this case is for the center pile in a group of 9 piles embedded in clay,which is not consistent with the behaviors of the other piles in the group even if the load reaches the ultimate state.For the 4 piles group embedded in clay,the maximum load carried by the base does not exceed 8% of the load carried by each pile with different diameters.This low percentage ascertains that the piles embedded in cohesive soils carry most of the load throughout their shafts.
基金supported by the National Natural Science Foundation of China(50778013)the National Basic Research Program of China(973 Program)(2010CB732100)Beijing Municipal Natural Science Foundation(8082020).
文摘The natural clayey soils are usually structural and unsaturated,which makes their mechanical properties quite different from the remolded saturated soils.A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism.In this model,the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory,and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic,whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model.The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils.Parametric analyses of the effects of damage variables on the model predictions are further carried out,which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.
基金The authors will also thank Shanghai municipal government for financial support(No.57-19-119-002).
文摘Palm fiber is one of the favorable materials used in stabilization of soft soil in geotechnical engineering projects in recent years due to its nature of sustainability,no harm to the environment,biodegradability,availability and costeffectiveness in the context of widespread appeal from the world for returning to nature and protecting the earth our homestead.This paper is aimed at exploring the mechanical performance of Shanghai clayey soil reinforced with palm fiber.The unconfined compressive tests are carried out on samples treated with palm fibers of different lengths and contents,and the unconfined compressive strength(UCS),ductility rate(DR),secant modulus(SM),energy absorption capacity(EAC)and failure pattern(FP)of the reinforced and unreinforced samples have been analyzed with regard to their relationship with palm fiber contents and lengths.Then multiple regression,grey correlation and general correlation relationship analysis are applied to the resultant test data so as to obtain the mathematical and statistical equation of related soil indexes.It has been concluded from the analysis that the unconfined compressive strength,ductility and energy absorption capacity of reinforced soil will increase with the increase in content and length of palm fiber,which are maximized when palm fiber content and length are 0.4%and 15 mm,respectively.On the contrary,the secant modulus of reinforced soil decreases considerably with content and length of palm fiber as a whole.Additionally,the failure pattern also changes from brittle to ductile gradually with the content and length of palm fiber.The data provided by the analysis of reinforced soil can be referred to and used for the related geotechnical engineering in the future.And the mathematical model obtained from the statistical regression is significantly meaningful because it can be used to predict the soil performance without the need for doing the additional tests,with saving in cost and time.What’s more,the application of palm fiber to soft soil is completely in accordance to the concept of sustainable development and environment protection.