This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constrain...This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.展开更多
The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human re...The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.展开更多
Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for m...Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.展开更多
State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging pro...State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machin...Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.展开更多
Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Co...Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.展开更多
Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Apertu...Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
Based on the analysis of the existing teaching situation of the“Construction Engineering Regulations”course,this paper divides the course content into three parts according to the course characteristics and content,...Based on the analysis of the existing teaching situation of the“Construction Engineering Regulations”course,this paper divides the course content into three parts according to the course characteristics and content,and explores three corresponding teaching modes.The proportion of student-led relationships in the three teaching modes is 80%,60%,and 90%,respectively,realizing a teaching mechanism centered on students and stimulating students’interest in independent learning.Teaching methods such as problem-oriented learning,group discussion,student reporting,MOOC(massive open online course),case analysis,etc.,have been used to establish a variety of comprehensive examination mechanisms such as quiz games,follow-up tests,and work displays.Practice has shown that after adopting these three teaching modes,classroom teaching efficiency has significantly improved,and students’abilities in exploration,expression,innovation,and team cooperation have also been enhanced.展开更多
With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering s...With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering skills in practical contexts.This paper presents an intelligent and interactive learning(Meta-SEE)framework for software engineering education that combines the immersive capabilities of the metaverse with the cognitive processes of metacognition,to create an interactive and engaging learning environment.In the Meta-SEE framework,learners are immersed in a virtual world where they can collaboratively engage with concepts and practices of software engineering.Through the integration of metacognitive strategies,learners are empowered to monitor,regulate,and adapt their learning processes.By incorporating metacognition within the metaverse,learners gain a deeper understanding of their own thinking processes and become self-directed learners.In addition,MetaSEE has the potential to revolutionize software engineering education by offering a dynamic,immersive,and personalized learning experience.It allows learners to engage in realistic software development scenarios,explore complex systems,and collaborate with peers and instructors in virtual spaces.展开更多
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f...A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection.展开更多
This paper presents new theoretical aspects of software engineering which oriented on product lines for building applied systems and software product families from readymade reusable components in conditions of progra...This paper presents new theoretical aspects of software engineering which oriented on product lines for building applied systems and software product families from readymade reusable components in conditions of program factories. These aspects are the new disciplines such as the theory of component programming;models variability and interoperability of system;theory for building systems and product families from components. Principles and methods of implementing these theories were realized in the instrumental and technological complex by lines of component development: assembling program factories using lines, e-learning to new theories and technologies in textbook of “Software Engineering” by the universities students.展开更多
This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control ...This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.展开更多
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none o...Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.展开更多
The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has...The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has been done to optimize these factors.However,predicting the device performance of the PSCs from the fabrication parameters before experiments is still challenging.Herein,we bridge this gap by machine learning(ML)based on a dataset including 1072 devices from peer-reviewed publications.The optimized ML model accurately predicts the PCE from the experimental parameters with a root mean square error of 1.28%and a Pearson coefficientr of 0.768.Moreover,the factors governing the device performance are ranked by shapley additive explanations(SHAP),among which,A-site cation is crucial to getting highly efficient PSCs.Experiments and density functional theory calculations are employed to validate and help explain the predicting results by the ML model.Our work reveals the feasibility of ML in predicting the device performance from the experimental parameters before experiments,which enables the reverse experimental design toward highly efficient PSCs.展开更多
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P...The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.展开更多
Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strate...Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering,aiming to improve structural performance evaluation,damage diagnosis,and capacity prediction.This review delves into the framework of predictive maintenance and examines various existing solutions,focusing on critical areas such as data acquisition,condition monitoring,damage prognosis,and maintenance planning.Results from real-world applications of predictive maintenance in civil engineering,covering high-rise structures,deep foundation pits,and other infrastructure,are presented.The challenges of implementing predictive maintenance in civil engineering structures under current technology,such as model interpretability of data-driven methods and standards for predictive maintenance,are explored.Future research prospects within this area are also discussed.展开更多
This paper introduces the Value Engineering method to calculate the value coefficient of Chinese learning efficiency for 377 international students by dimension.Results suggest that attention should be paid to male,Eu...This paper introduces the Value Engineering method to calculate the value coefficient of Chinese learning efficiency for 377 international students by dimension.Results suggest that attention should be paid to male,European and American,rural,introverted,and“work or education needs”international students;Give full play to the driving role of the reference-type,explore the space for improving the learning efficiency of the improvement-type and attention-type,and pay attention to the problems of problem-type international students.展开更多
基金2024 Education and Teaching Reform Project of Hainan Tropical Ocean University(RHYxgnw2024-16)。
文摘This paper proposes teaching reforms in communication engineering majors,emphasizing the implementation of digital and adaptive teaching methodologies,integrating emerging technologies,breaking free from the constraints of traditional education,and fostering high-caliber talents.The reform measures encompass fundamental data collection,recognition of individual characteristics,recommendation of adaptive learning resources,process-oriented teaching management,adaptive student guidance and early warning systems,personalized evaluation,and the construction of an integrated service platform.These measures,when combined,form a comprehensive system that is expected to enhance teaching quality and efficiency,and facilitate student development.
基金This work is supported by EIAS(Emerging Intelligent Autonomous Systems)Data Science Lab,Prince Sultan University,Kingdom of Saudi Arabia,by paying the APC.
文摘The software development process mostly depends on accurately identifying both essential and optional features.Initially,user needs are typically expressed in free-form language,requiring significant time and human resources to translate these into clear functional and non-functional requirements.To address this challenge,various machine learning(ML)methods have been explored to automate the understanding of these requirements,aiming to reduce time and human effort.However,existing techniques often struggle with complex instructions and large-scale projects.In our study,we introduce an innovative approach known as the Functional and Non-functional Requirements Classifier(FNRC).By combining the traditional random forest algorithm with the Accuracy Sliding Window(ASW)technique,we develop optimal sub-ensembles that surpass the initial classifier’s accuracy while using fewer trees.Experimental results demonstrate that our FNRC methodology performs robustly across different datasets,achieving a balanced Precision of 75%on the PROMISE dataset and an impressive Recall of 85%on the CCHIT dataset.Both datasets consistently maintain an F-measure around 64%,highlighting FNRC’s ability to effectively balance precision and recall in diverse scenarios.These findings contribute to more accurate and efficient software development processes,increasing the probability of achieving successful project outcomes.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA17040506)the National Natural Science Foundation of China(62005148/12004235)+2 种基金The Open Competition Mechanism to Select The Best Candidates Project in Jinzhong Science and Technology Bureau (J202101)the DNL Cooperation Fund CAS(DNL180311)the 111 Project (B14041)
文摘Metal-halide hybrid perovskite materials are excellent candidates for solar cells and photoelectric devices.In recent years,machine learning(ML)techniques have developed rapidly in many fields and provided ideas for material discovery and design.ML can be applied to discover new materials quickly and effectively,with significant savings in resources and time compared with traditional experiments and density functional theory(DFT)calculations.In this review,we present the application of ML in per-ovskites and briefly review the recent works in the field of ML-assisted perovskite design.Firstly,the advantages of perovskites in solar cells and the merits of ML applied to perovskites are discussed.Secondly,the workflow of ML in perovskite design and some basic ML algorithms are introduced.Thirdly,the applications of ML in predicting various properties of perovskite materials and devices are reviewed.Finally,we propose some prospects for the future development of this field.The rapid devel-opment of ML technology will largely promote the process of materials science,and ML will become an increasingly popular method for predicting the target properties of materials and devices.
基金funded by China Scholarship Council.The fund number is 202108320111 and 202208320055。
文摘State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
基金supported by the State Administration of Science,Technology and Industry for National Defence,PRC(KJSP2020020303)the National Institute of Natural Hazards,Ministry of Emergency Management of China(ZDJ2021-12)。
文摘Landslide hazard mapping is essential for regional landslide hazard management.The main objective of this study is to construct a rainfall-induced landslide hazard map of Luhe County,China based on an automated machine learning framework(AutoGluon).A total of 2241 landslides were identified from satellite images before and after the rainfall event,and 10 impact factors including elevation,slope,aspect,normalized difference vegetation index(NDVI),topographic wetness index(TWI),lithology,land cover,distance to roads,distance to rivers,and rainfall were selected as indicators.The WeightedEnsemble model,which is an ensemble of 13 basic machine learning models weighted together,was used to output the landslide hazard assessment results.The results indicate that landslides mainly occurred in the central part of the study area,especially in Hetian and Shanghu.Totally 102.44 s were spent to train all the models,and the ensemble model WeightedEnsemble has an Area Under the Curve(AUC)value of92.36%in the test set.In addition,14.95%of the study area was determined to be at very high hazard,with a landslide density of 12.02 per square kilometer.This study serves as a significant reference for the prevention and mitigation of geological hazards and land use planning in Luhe County.
基金supported by the projects of the China Geological Survey(DD20221729,DD20190291)Zhuhai Urban Geological Survey(including informatization)(MZCD–2201–008).
文摘Machine learning is currently one of the research hotspots in the field of landslide prediction.To clarify and evaluate the differences in characteristics and prediction effects of different machine learning models,Conghua District,which is the most prone to landslide disasters in Guangzhou,was selected for landslide susceptibility evaluation.The evaluation factors were selected by using correlation analysis and variance expansion factor method.Applying four machine learning methods namely Logistic Regression(LR),Random Forest(RF),Support Vector Machines(SVM),and Extreme Gradient Boosting(XGB),landslide models were constructed.Comparative analysis and evaluation of the model were conducted through statistical indices and receiver operating characteristic(ROC)curves.The results showed that LR,RF,SVM,and XGB models have good predictive performance for landslide susceptibility,with the area under curve(AUC)values of 0.752,0.965,0.996,and 0.998,respectively.XGB model had the highest predictive ability,followed by RF model,SVM model,and LR model.The frequency ratio(FR)accuracy of LR,RF,SVM,and XGB models was 0.775,0.842,0.759,and 0.822,respectively.RF and XGB models were superior to LR and SVM models,indicating that the integrated algorithm has better predictive ability than a single classification algorithm in regional landslide classification problems.
基金Under the auspices of National Natural Science Foundation of China(No.42071385)National Science and Technology Major Project of High Resolution Earth Observation System(No.79-Y50-G18-9001-22/23)。
文摘Automatically detecting Ulva prolifera(U.prolifera)in rainy and cloudy weather using remote sensing imagery has been a long-standing problem.Here,we address this challenge by combining high-resolution Synthetic Aperture Radar(SAR)imagery with the machine learning,and detect the U.prolifera of the South Yellow Sea of China(SYS)in 2021.The findings indicate that the Random Forest model can accurately and robustly detect U.prolifera,even in the presence of complex ocean backgrounds and speckle noise.Visual inspection confirmed that the method successfully identified the majority of pixels containing U.prolifera without misidentify-ing noise pixels or seawater pixels as U.prolifera.Additionally,the method demonstrated consistent performance across different im-ages,with an average Area Under Curve(AUC)of 0.930(+0.028).The analysis yielded an overall accuracy of over 96%,with an aver-age Kappa coefficient of 0.941(+0.038).Compared to the traditional thresholding method,Random Forest model has a lower estima-tion error of 14.81%.Practical application indicates that this method can be used in the detection of unprecedented U.prolifera in 2021 to derive continuous spatiotemporal changes.This study provides a potential new method to detect U.prolifera and enhances our under-standing of macroalgal outbreaks in the marine environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘Based on the analysis of the existing teaching situation of the“Construction Engineering Regulations”course,this paper divides the course content into three parts according to the course characteristics and content,and explores three corresponding teaching modes.The proportion of student-led relationships in the three teaching modes is 80%,60%,and 90%,respectively,realizing a teaching mechanism centered on students and stimulating students’interest in independent learning.Teaching methods such as problem-oriented learning,group discussion,student reporting,MOOC(massive open online course),case analysis,etc.,have been used to establish a variety of comprehensive examination mechanisms such as quiz games,follow-up tests,and work displays.Practice has shown that after adopting these three teaching modes,classroom teaching efficiency has significantly improved,and students’abilities in exploration,expression,innovation,and team cooperation have also been enhanced.
基金partially funded by the 2023 Teaching Quality Engineering Construction Project of Sun Yat-sen University(No.76250-12230036)the 2023 Project of Computer Education Research Association of Chinese Universities(No.CERACU2023R02)。
文摘With the rapid evolution of technology and the increasing complexity of software systems,there is a growing demand for effective educational approaches that empower learners to acquire and apply software engineering skills in practical contexts.This paper presents an intelligent and interactive learning(Meta-SEE)framework for software engineering education that combines the immersive capabilities of the metaverse with the cognitive processes of metacognition,to create an interactive and engaging learning environment.In the Meta-SEE framework,learners are immersed in a virtual world where they can collaboratively engage with concepts and practices of software engineering.Through the integration of metacognitive strategies,learners are empowered to monitor,regulate,and adapt their learning processes.By incorporating metacognition within the metaverse,learners gain a deeper understanding of their own thinking processes and become self-directed learners.In addition,MetaSEE has the potential to revolutionize software engineering education by offering a dynamic,immersive,and personalized learning experience.It allows learners to engage in realistic software development scenarios,explore complex systems,and collaborate with peers and instructors in virtual spaces.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)the National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection.
文摘This paper presents new theoretical aspects of software engineering which oriented on product lines for building applied systems and software product families from readymade reusable components in conditions of program factories. These aspects are the new disciplines such as the theory of component programming;models variability and interoperability of system;theory for building systems and product families from components. Principles and methods of implementing these theories were realized in the instrumental and technological complex by lines of component development: assembling program factories using lines, e-learning to new theories and technologies in textbook of “Software Engineering” by the universities students.
基金supported in part by the Natural Sciences Engineering Research Council of Canada (NSERC)。
文摘This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.
基金supported by the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant,No.2020LKSFG02C(to Qiang Fang and SG)the National Natural Science Foundation of China,No.82201511(to SG)+1 种基金the Guangdong Basic and Applied Basic Research Foundation,Nos.2021A1515110873(to SG),2022A1515110139(to TW)the Medical Scientific Research Foundation of Guangdong Province,No.A2022077(to SG)。
文摘Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.
基金the National Natural Science Foundation of China(Grant No.62075006)the National Key Research and Development Program of China(Grant No.2021YFB3600403)the Natural Science Talents Foundation(Grant No.KSRC22001532)。
文摘The performance of the metal halide perovskite solar cells(PSCs)highly relies on the experimental parameters,including the fabrication processes and the compositions of the perovskites;tremendous experimental work has been done to optimize these factors.However,predicting the device performance of the PSCs from the fabrication parameters before experiments is still challenging.Herein,we bridge this gap by machine learning(ML)based on a dataset including 1072 devices from peer-reviewed publications.The optimized ML model accurately predicts the PCE from the experimental parameters with a root mean square error of 1.28%and a Pearson coefficientr of 0.768.Moreover,the factors governing the device performance are ranked by shapley additive explanations(SHAP),among which,A-site cation is crucial to getting highly efficient PSCs.Experiments and density functional theory calculations are employed to validate and help explain the predicting results by the ML model.Our work reveals the feasibility of ML in predicting the device performance from the experimental parameters before experiments,which enables the reverse experimental design toward highly efficient PSCs.
基金supported by the second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the National Natural Science Foundation of China(Grant No.41941019)the National Natural Science Foundation of China(Grant NO.42307217)。
文摘The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability.
基金The National Natural Science Foundation of China(No.52278312)the National Key Research and Development Program of China(No.2022YFC3801202)the Fundamental Research Funds for the Central Universities.
文摘Structural health monitoring and performance prediction are crucial for smart disaster mitigation and intelligent management of structures throughout their lifespan.Recent advancements in predictive maintenance strategies within the industrial manufacturing industry have inspired similar innovations in civil engineering,aiming to improve structural performance evaluation,damage diagnosis,and capacity prediction.This review delves into the framework of predictive maintenance and examines various existing solutions,focusing on critical areas such as data acquisition,condition monitoring,damage prognosis,and maintenance planning.Results from real-world applications of predictive maintenance in civil engineering,covering high-rise structures,deep foundation pits,and other infrastructure,are presented.The challenges of implementing predictive maintenance in civil engineering structures under current technology,such as model interpretability of data-driven methods and standards for predictive maintenance,are explored.Future research prospects within this area are also discussed.
基金funded by Project:2024 Youth Project of Philosophy and Social Sciences Planning in Guangdong Province“Research on the Relationship between Mandarin and Economic Development in Cantonese Speaking Areas(GD24YZY03)”.
文摘This paper introduces the Value Engineering method to calculate the value coefficient of Chinese learning efficiency for 377 international students by dimension.Results suggest that attention should be paid to male,European and American,rural,introverted,and“work or education needs”international students;Give full play to the driving role of the reference-type,explore the space for improving the learning efficiency of the improvement-type and attention-type,and pay attention to the problems of problem-type international students.